
Code responsibly with generative AI in Python (CRWGAIP)

ID CRWGAIP Prix CHF 2 250,– (Hors Taxe) Durée 3 jours

A qui s'adresse cette formation

Python developers using Copilot or other GenAI tools

Pré-requis

General Python and Web development

Objectifs

Understanding the essentials of responsible AI
Getting familiar with essential cyber security concepts
Understanding how cryptography supports security
Learning how to use cryptographic APIs correctly in Python
Understanding Web application security issues
Detailed analysis of the OWASP Top Ten elements
Putting Web application security in the context of Python
Going beyond the low hanging fruits
Managing vulnerabilities in third party components
All this put into the context of GitHub Copilot

Contenu

Day 1

Coding responsibly with GenAI

What is responsible AI?
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software
Security and responsible AI in software development
GenAI tools in coding: Copilot, Codeium and others
The OWASP Top Ten from Copilot’s perspective

The OWASP Top Ten 2021
A01 – Broken Access Control

Access control basics
Failure to restrict URL access
Confused deputy
Insecure direct object reference
(IDOR)
Path traversal
Lab – Insecure Direct Object

Reference
Path traversal best practices
Lab – Experimenting with path
traversal in Copilot
Authorization bypass through user-
controlled keys
Case study – Remote takeover of
Nexx garage doors and alarms
Lab – Horizontal authorization
(exploring with Copilot)
File upload

Unrestricted file upload
Good practices
Lab – Unrestricted file upload
(exploring with Copilot)

A02 – Cryptographic Failures
Cryptography for developers
Cryptography basics
Cryptography in Python
Elementary algorithms
Hashing

Hashing basics
Hashing in Python
Lab – Hashing in Python
(exploring with Copilot)

Random number generation
Pseudo random number
generators (PRNGs)
Cryptographically secure
PRNGs
Weak PRNGs
Using random numbers
Lab – Using random
numbers in Python (exploring
with Copilot)
Lab – Secure PRNG use in
Copilot

Confidentiality protection
Symmetric encryption

Block ciphers
Modes of operation
Modes of operation
and IV – best
practices
Symmetric encryption
in Python
Lab – Symmetric

Page 1/4

Code responsibly with generative AI in Python (CRWGAIP)

encryption in Python
(exploring with
Copilot)

Asymmetric encryption
Combining symmetric and
asymmetric algorithms

Day 2

The OWASP Top Ten from Copilot’s perspective

A03 – Injection
Injection principles
Injection attacks

SQL injection
SQL injection basics
Lab – SQL injection
Attack techniques

Content-based blind SQL
injection
Time-based blind SQL
injection

SQL injection best practices
Input validation
Parameterized queries
Lab – Using prepared statements
Lab – Experimenting with SQL
injection in Copilot
Database defense in depth
Case study – SQL injection against
US airport security

Code injection
Code injection via input()
OS command injection
Lab – Command injection
OS command injection best
practices
Avoiding command injection with the
right APIs
Lab – Command injection best
practices
Lab – Experimenting with command
injection in Copilot
Case study – Shellshock
Lab – Shellshock
Case study – Command injection in
Ivanti security appliances

HTML injection – Cross-site scripting (XSS)
Cross-site scripting basics
Cross-site scripting types

Persistent cross-site scripting
Reflected cross-site scripting
Client-side (DOM-based)
cross-site scripting

Lab – Stored XSS
Lab – Reflected XSS
Case study – XSS to RCE in
Teltonika routers
XSS protection best practices
Protection principles – escaping
XSS protection APIs in Python
XSS protection in Jinja2
Lab – XSS fix / stored (exploring with
Copilot)
Lab – XSS fix / reflected (exploring
with Copilot)
Case study – XSS vulnerabilities in
DrayTek Vigor routers

A04 – Insecure Design
The STRIDE model of threats
Secure design principles of Saltzer and
Schroeder

Economy of mechanism
Fail-safe defaults
Complete mediation
Open design
Separation of privilege
Least privilege
Least common mechanism
Psychological acceptability

Client-side security
Same Origin Policy
Simple request
Preflight request
Cross-Origin Resource Sharing
(CORS)
Lab – Same-origin policy demo
Frame sandboxing
Cross-Frame Scripting (XFS) attacks
Lab – Clickjacking
Clickjacking beyond hijacking a click
Clickjacking protection best
practices
Lab – Using CSP to prevent
clickjacking (exploring with Copilot)

Day 3

The OWASP Top Ten from Copilot’s perspective

A05 – Security Misconfiguration
Configuration principles
Server misconfiguration
Python configuration best practices
Configuring Flask
Cookie security

Cookie attributes
XML entities

DTD and the entities

Page 2/4

Code responsibly with generative AI in Python (CRWGAIP)

Entity expansion
External Entity Attack (XXE)
File inclusion with external entities
Server-Side Request Forgery with
external entities
Lab – External entity attack
Preventing XXE
Lab – Prohibiting DTD
Case study – XXE vulnerability in
Ivanti products
Lab – Experimenting with XXE in
Copilot

A06 – Vulnerable and Outdated Components
Using vulnerable components
Untrusted functionality import
Malicious packages in Python
Case study – The Polyfill.io supply chain
attack
Vulnerability management
Lab – Finding vulnerabilities in third-party
components
Security of AI generated code
Practical attacks against code generation
tools
Dependency hallucination via generative AI
Case study – A history of GitHub Copilot
weaknesses (up to mid 2024)

A07 – Identification and Authentication Failures
Authentication

Authentication basics
Multi-factor authentication (MFA)
Case study – The InfinityGauntlet
attack
Time-based One Time Passwords
(TOTP)

Password management
Inbound password management
Storing account passwords
Password in transit
Lab – Is just hashing passwords
enough?
Dictionary attacks and brute forcing
Salting
Adaptive hash functions for
password storage
Lab – Using adaptive hash functions
in Python
Lab – Using adaptive hash functions
in Copilot
Password policy
NIST authenticator requirements for
memorized secrets
Password database migration

A08 – Software and Data Integrity Failures

Integrity protection
Message Authentication Code
(MAC)
Calculating HMAC in Python
Lab – Calculating MAC in Python

Digital signature
Digital signature in Python

Subresource integrity
Importing JavaScript
Lab – Importing JavaScript
(exploring with Copilot)
Case study – The British Airways
data breach

A10 – Server-side Request Forgery (SSRF)
Server-side Request Forgery (SSRF)
Case study – SSRF in Ivanti Connect
Secure

Wrap up
Secure coding principles
Principles of robust programming by Matt
Bishop
And now what?
Software security sources and further
reading
Python resources
Responsible AI principles in software
development
Generative AI – Resources and additional
guidance

Page 3/4

Code responsibly with generative AI in Python (CRWGAIP)

Centres de formation dans le monde entier

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Page 4/4

http://www.tcpdf.org

