=Fast Lane

Code responsibly with generative Al in Python (CRWGAIP)

ID CRWGAIP Prix sur demande Durée 3 jours

A qui s'adresse cette formation

Python developers using Copilot or other GenAl tools

Pré-requis

General Python and Web development

Objectifs

¢ Understanding the essentials of responsible Al

¢ Getting familiar with essential cyber security concepts

¢ Understanding how cryptography supports security

e Learning how to use cryptographic APIs correctly in Python
¢ Understanding Web application security issues

¢ Detailed analysis of the OWASP Top Ten elements

e Putting Web application security in the context of Python

¢ Going beyond the low hanging fruits

e Managing vulnerabilities in third party components

¢ All this put into the context of GitHub Copilot

Contenu
Day 1
Coding responsibly with GenAl

e What is responsible Al?
e What is security?
e Threat and risk
¢ Cyber security threat types — the CIA triad
¢ Consequences of insecure software
e Security and responsible Al in software development
e GenAl tools in coding: Copilot, Codeium and others
e The OWASP Top Ten from Copilot's perspective
o The OWASP Top Ten 2021
= AO1 - Broken Access Control
e Access control basics
e Failure to restrict URL access
e Confused deputy
¢ Insecure direct object reference
(IDOR)
e Path traversal
e Lab — Insecure Direct Object

Reference
Path traversal best practices
Lab — Experimenting with path
traversal in Copilot
Authorization bypass through user-
controlled keys
Case study — Remote takeover of
Nexx garage doors and alarms
Lab — Horizontal authorization
(exploring with Copilot)
File upload

o Unrestricted file upload

o Good practices

o Lab — Unrestricted file upload

(exploring with Copilot)

= AO2 — Cryptographic Failures

Cryptography for developers
Cryptography basics
Cryptography in Python
Elementary algorithms
Hashing
o Hashing basics
o Hashing in Python
o Lab — Hashing in Python
(exploring with Copilot)
Random number generation
e Pseudo random number
generators (PRNGSs)
o Cryptographically secure
PRNGs
o Weak PRNGs
o Using random numbers
o Lab — Using random
numbers in Python (exploring
with Copilot)
o Lab — Secure PRNG use in
Copilot
Confidentiality protection
° Symmetric encryption
= Block ciphers
= Modes of operation
= Modes of operation
and IV — best
practices
= Symmetric encryption
in Python
= Lab — Symmetric

Page 1/4

Code responsibly with generative Al in Python (CRWGAIP)

encryption in Python
(exploring with
Copilot)
o Asymmetric encryption
o Combining symmetric and
asymmetric algorithms

Day 2
The OWASP Top Ten from Copilot’'s perspective

¢ AO3 — Injection
o Injection principles
o Injection attacks
= SQL injection
® SQL injection basics
e Lab — SQL injection
e Attack techniques
o Content-based blind SQL
injection
o Time-based blind SQL
injection
e SQL injection best practices
¢ Input validation
e Parameterized queries
e Lab — Using prepared statements
e Lab — Experimenting with SQL
injection in Copilot
e Database defense in depth
e Case study — SQL injection against
US airport security
= Code injection
e Code injection via input()
e OS command injection
e Lab — Command injection
e OS command injection best
practices
¢ Avoiding command injection with the
right APIs
¢ Lab — Command injection best
practices
¢ Lab — Experimenting with command
injection in Copilot
e Case study — Shellshock
e Lab — Shellshock
e Case study — Command injection in
Ivanti security appliances
= HTML injection — Cross-site scripting (XSS)
¢ Cross-site scripting basics
¢ Cross-site scripting types
o Persistent cross-site scripting
o Reflected cross-site scripting
o Client-side (DOM-based)
cross-site scripting

e Lab — Stored XSS
e Lab — Reflected XSS
e Case study — XSS to RCE in
Teltonika routers
e XSS protection best practices
¢ Protection principles — escaping
e XSS protection APIs in Python
e XSS protection in Jinja2
e Lab — XSS fix / stored (exploring with
Copilot)
e Lab — XSS fix / reflected (exploring
with Copilot)
e Case study — XSS vulnerabilities in
DrayTek Vigor routers
o A04 — Insecure Design
= The STRIDE model of threats
= Secure design principles of Saltzer and
Schroeder
e Economy of mechanism
¢ Fail-safe defaults
e Complete mediation
e Open design
e Separation of privilege
e Least privilege
e Least common mechanism
¢ Psychological acceptability
= Client-side security
e Same Origin Policy
e Simple request
¢ Preflight request
¢ Cross-Origin Resource Sharing
(CORS)
e Lab — Same-origin policy demo
¢ Frame sandboxing
e Cross-Frame Scripting (XFS) attacks
e Lab — Clickjacking
¢ Clickjacking beyond hijacking a click
¢ Clickjacking protection best
practices
e Lab — Using CSP to prevent
clickjacking (exploring with Copilot)

Day 3
The OWASP Top Ten from Copilot’'s perspective

o AO05 — Security Misconfiguration
= Configuration principles
= Server misconfiguration
= Python configuration best practices
= Configuring Flask
= Cookie security
e Cookie attributes
= XML entities
e DTD and the entities

Page 2/4

Code responsibly with generative Al in Python (CRWGAIP)

e Entity expansion

e External Entity Attack (XXE)

¢ File inclusion with external entities

e Server-Side Request Forgery with
external entities

e Lab — External entity attack

¢ Preventing XXE

e Lab — Prohibiting DTD

e Case study — XXE vulnerability in
Ivanti products

e Lab — Experimenting with XXE in
Copilot

o A06 — Vulnerable and Outdated Components

Using vulnerable components

Untrusted functionality import

Malicious packages in Python

Case study — The Polyfill.io supply chain
attack

Vulnerability management

Lab — Finding vulnerabilities in third-party
components

Security of Al generated code

Practical attacks against code generation
tools

Dependency hallucination via generative Al
Case study — A history of GitHub Copilot
weaknesses (up to mid 2024)

o AO07 — ldentification and Authentication Failures

Authentication

¢ Authentication basics

¢ Multi-factor authentication (MFA)

e Case study — The InfinityGauntlet
attack

e Time-based One Time Passwords
(TOTP)

Password management

¢ Inbound password management

¢ Storing account passwords

e Password in transit

e Lab — Is just hashing passwords
enough?

¢ Dictionary attacks and brute forcing

e Salting

e Adaptive hash functions for
password storage

¢ Lab — Using adaptive hash functions
in Python

¢ Lab — Using adaptive hash functions
in Copilot

e Password policy

e NIST authenticator requirements for
memorized secrets

e Password database migration

o AO8 — Software and Data Integrity Failures

Integrity protection
e Message Authentication Code
(MAC)
e Calculating HMAC in Python
e Lab — Calculating MAC in Python
Digital signature
¢ Digital signature in Python
Subresource integrity
e Importing JavaScript
e Lab — Importing JavaScript
(exploring with Copilot)
e Case study — The British Airways
data breach

o Al0 — Server-side Request Forgery (SSRF)

Server-side Request Forgery (SSRF)
Case study — SSRF in Ivanti Connect
Secure

o Wrap up

Secure coding principles

Principles of robust programming by Matt
Bishop

And now what?

Software security sources and further
reading

Python resources

Responsible Al principles in software
development

Generative Al — Resources and additional
guidance

Page 3/4

Code responsibly with generative Al in Python (CRWGAIP)

Centres de formation dans le monde entier

‘ L]
< I . 0 . .
. . ase >y
® 0%, — .
: 3 Srope
- e L] S - e ®
L) L) - - . %
Heorin fnzrisz e
..‘ ’ o 4 a - . .
. : ey »
1 o Wlelel]e Basi : . ot
\ E * ‘ .o As5lz Paeifie .
. . 3
4 -
5 : - I' . a
Tt .. i .
.))
. . .
o . .
.
2 .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Page 4/4

http://www.tcpdf.org

