=Fast Lane

Code responsibly with generative Al in Java (CRWGAIJ)

ID CRWGAIJ Prix CHF 2 250,— (Hors Taxe) Durée 3 jours

A qui s'adresse cette formation e Lab — Insecure Direct Object
Reference
Java developers using Copilot or other GenAl tools * Path traversal best practices

¢ Lab — Experimenting with path
traversal in Copilot
e Authorization bypass through user-
controlled keys
e Case study — Remote takeover of
Nexx garage doors and alarms
e Lab — Horizontal authorization
(exploring with Copilot)
e File upload
o Unrestricted file upload
o Good practices
o Lab — Unrestricted file upload
(exploring with Copilot)
o Case study — File upload
vulnerability in Netflix Genie
= A02 — Cryptographic Failures
¢ Cryptography for developers
¢ Cryptography basics
¢ Java Cryptographic Architecture

Pré-requis

OWASP, SEI CERT, CWE and Fortify Taxonomy

Objectifs

¢ Understanding the essentials of responsible Al

¢ Getting familiar with essential cyber security concepts

¢ Understanding how cryptography supports security

e Learning how to use cryptographic APIs correctly in Java
¢ Understanding Web application security issues

¢ Detailed analysis of the OWASP Top Ten elements

e Putting Web application security in the context of Java

¢ Going beyond the low hanging fruits

e Managing vulnerabilities in third party components

e All this put into the context of GitHub Copilot (JCA) in brief
¢ Elementary algorithms
e Hashing
Contenu o Hashing basics
Day 1 e Hashing in Java
o Lab — Hashing in JCA
Coding responsibly with GenAl (exploring with Copilot)
¢ Random number generation
¢ What is responsible Al? o Pseudo random number
e What is security? generators (PRNGSs)
e Threat and risk o Cryptographically secure
¢ Cyber security threat types — the CIA triad PRNGs
* Consequences of insecure software o Weak and strong PRNGs in
* Security and responsible Al in software development Java
e GenAl tools in coding: Copilot, Codeium and others o Lab — Using random
e The OWASP Top Ten from Copilot’s perspective numbers in Java (exploring
o The OWASP Top Ten 2021 with Copilot)
= AO1 - Broken Access Control o Case study — Equifax credit
e Access control basics account freeze
¢ Case study — Broken authn/authz in * Confidentiality protection
Apache OFBiz o Symmetric encryption
e Confused deputy = Block ciphers
¢ Insecure direct object reference = Modes of operation
(IDOR) = Modes of operation
¢ Path traversal and IV — best

Page 1/5

Code responsibly with generative Al in Java (CRWGAIJ)

practices
= Symmetric encryption
in Java
= Symmetric encryption
in Java with streams
= Lab — Symmetric
encryption in JCA
(exploring with
Copilot)
o Asymmetric encryption
o Combining symmetric and
asymmetric algorithms
o Key exchange and
agreement
= Key exchange
= Diffie-Hellman key
agreement algorithm
= Key exchange pitfalls
and best practices

Day 2

The OWASP Top Ten from Copilot’'s perspective

¢ AO3 - Injection
o Injection principles
o Injection attacks
= SQL injection
e SQL injection basics
e Lab — SQL injection
e Attack techniques
o Content-based blind SQL
injection
o Time-based blind SQL
injection
e SQL injection best practices
¢ Input validation
e Parameterized queries
e Lab — Using prepared statements
¢ Lab — Experimenting with SQL
injection in Copilot
¢ Database defense in depth
e Case study — SQL injection in Fortra
FileCatalyst
= Code injection
e OS command injection
e OS command injection best
practices
¢ Using Runtime.exec()
e Case study — Shellshock
e Lab — Shellshock
e Case study — Command injection in
VMware Aria
= HTML injection — Cross-site scripting (XSS)

Cross-site scripting basics
Cross-site scripting types
o Persistent cross-site scripting
o Reflected cross-site scripting
o Client-side (DOM-based)
cross-site scripting
e Lab — Stored XSS
¢ Lab — Reflected XSS
e XSS protection best practices
¢ Protection principles — escaping
e XSS protection APIs in Java
e Lab — XSS fix / stored (exploring with
Copilot)
e Lab — XSS fix / reflected (exploring
with Copilot)
Additional protection layers —
defense in depth
Case study — XSS vulnerabilities in
DrayTek Vigor routers
° A04 — Insecure Design
= The STRIDE model of threats
= Secure design principles of Saltzer and
Schroeder
e Economy of mechanism
¢ Fail-safe defaults
e Complete mediation
e Open design
e Separation of privilege
e Least privilege
¢ Least common mechanism
¢ Psychological acceptability
= Client-side security
= Frame sandboxing
= Cross-Frame Scripting (XFS) attacks
= Lab - Clickjacking
= Clickjacking beyond hijacking a click
= Clickjacking protection best practices
= Lab — Using CSP to prevent clickjacking
(exploring with Copilot)
o AO5 — Security Misconfiguration
= Configuration principles
= XML entities
e DTD and the entities
e Entity expansion
e External Entity Attack (XXE)
¢ File inclusion with external entities
¢ Server-Side Request Forgery with
external entities
¢ Lab — External entity attack
e Preventing XXE
e Lab — Prohibiting DTD
e Case study — XXE vulnerability in
Ivanti products
e Lab — Experimenting with XXE in

Page 2/5

Code responsibly with generative Al in Java (CRWGAIJ)

Copilot
Day 3

The OWASP Top Ten from Copilot’s
perspective

= AO6 — Vulnerable and Outdated
Components

e Using vulnerable components

e Untrusted functionality import

e Case study — The Polyfill.io supply
chain attack

¢ Vulnerability management

e Lab — Finding vulnerabilities in third-
party components

e Security of Al generated code

¢ Practical attacks against code
generation tools

¢ Dependency hallucination via
generative Al

e Case study — A history of GitHub
Copilot weaknesses (up to mid

2024)
= AQ7 — ldentification and Authentication
Failures

¢ Authentication
o Authentication basics
o Multi-factor authentication
(MFA)
o Case study — The
InfinityGauntlet attack
e Password management
e Inbound password
management
o Storing account passwords
o Lab — Is just hashing
passwords enough?
o Dictionary attacks and brute
forcing
o Salting
o Adaptive hash functions for
password storage
o Lab — Using adaptive hash
functions in JCA
o Lab — Using adaptive hash
functions in Copilot
o Password policy
o NIST authenticator
requirements for memorized
secrets
= AO8 — Software and Data Integrity Failures
¢ Integrity protection
o Message Authentication
Code (MAC)

o Calculating MAC in Java
o Lab — Calculating MAC in
JCA
¢ Digital signature
o Elliptic Curve Cryptography
o ECC basics
o Digital signature with ECC
o Digital signature in Java
o Lab — Digital signature with
ECDSA in JCA
e Subresource integrity
o Importing JavaScript
o Lab — Importing JavaScript
(exploring with Copilot)
o Case study — The British
Airways data breach
¢ Insecure deserialization
o Serialization and
deserialization challenges
o Integrity — deserializing
untrusted streams
o Integrity — deserialization
best practices
o Look ahead deserialization
o Property Oriented
Programming (POP)
o Creating a POP payload
o Lab — Creating a POP
payload
o Lab — Using the POP
payload
o Case study — Deserialization
RCEs in NextGen Mirth
Connect
= AQ9 — Security Logging and Monitoring
Failures

¢ Logging and monitoring principles

¢ Log forging

¢ Log forging — best practices

e Case study — Log interpolation in
log4j

e Case study — The Log4Shell
vulnerability (CVE-2021-44228)

e Case study — Log4Shell follow-ups
(CVE-2021-45046,
CVE-2021-45105)

e Lab — Log4Shell

= A10 - Server-side Request Forgery (SSRF)

e Server-side Request Forgery
(SSRF)

e Case study — SSRF in Ivanti
Connect Secure

= Wrap up
¢ Secure coding principles

Page 3/5

Code responsibly with generative Al in Java (CRWGAIJ)

¢ Principles of robust programming by
Matt Bishop

e And now what?

e Software security sources and
further reading

* Java resources

¢ Responsible Al principles in software
development

e Generative Al — Resources and
additional guidance

Page 4/5

Code responsibly with generative Al in Java (CRWGAIJ)

Centres de formation dans le monde entier

‘ L]
< I . 0 . .
. . ase >y
® 0%, — .
: 3 Srope
- e L] S - e ®
L) L) - - . %
Heorin fnzrisz e
..‘ ’ o 4 a - . .
. : ey »
1 o Wlelel]e Basi : . ot
\ E * ‘ .o As5lz Paeifie .
. . 3
4 -
5 : - I' . a
Tt .. i .
.))
. . .
o . .
.
2 .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Page 5/5

http://www.tcpdf.org

