=Fast Lane

Code responsibly with generative Al in C# (desktop applications)
(CRWGAIC)

ID CRWGAIC Prix CHF 2 250,— (Hors Taxe) Durée 3 jours

A qui s'adresse cette formation * Injection
o Code injection
OS command injection
Lab — Command injection
OS command injection best practices
Avoiding command injection with the right APIs
Lab — Command injection best practices
Lab — Experimenting with command injection in
Copilot
o Case study — Command injection in Ruckus
¢ Integer handling problems
o Representing signed numbers
Integer visualization
Integer overflow
Lab — Integer overflow
Signed / unsigned confusion
o Case study — The Stockholm Stock Exchange
o Lab — Signed / unsigned confusion
o Lab — Experimenting with signed / unsigned
confusion in Copilot
o Integer truncation
o Best practices
o
o

o

C# developers using Copilot or other GenAl tools

Pré-requis

o 0 o o o

General C# development

Objectifs

¢ Understanding the essentials of responsible Al

¢ Getting familiar with essential cyber security concepts
¢ Input validation approaches and principles

e |dentify vulnerabilities and their consequences

e Learn the security best practices in C#

e Correctly implementing various security features

e Managing vulnerabilities in third party components

¢ Understanding how cryptography supports security

¢ Learning how to use cryptographic APIs correctly in C#
e All this put into the context of GitHub Copilot

o o0 o o

Upcasting
Precondition testing
o Postcondition testing
o Integer handling in C#
o Lab — Checked arithmetics

Contenu o Lab — Experimenting with integer overflow in Copilot
Day 1 * Files and streams
o Path traversal
Coding responsibly with GenAl o Lab — Path traversal
o Additional challenges in Windows
* What is responsible Al? o Case study — File spoofing in WinRAR

e What is security?
¢ Threat and risk

o

Path traversal best practices
Lab — Path canonicalization

o

* Cyber security threat types — the CIA triad o Lab — Experimenting with path traversal in Copilot
e Consequences of insecure software
e Security and responsible Al in software development Day 2
¢ GenAl tools in coding: Copilot, Codeium and others
* Input validation Input validation
o Input validation principles
o Denylists and allowlists * Unsafe reflection
o What to validate — the attack surface ° Reflection without validation
o Where to validate — defense in depth ° Lab — Unsafe reflection
o When to validate — validation vs transformations ° Lab — Experimenting with unsafe reflection in

Page 1/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

Copilot
e Unsafe native code
o Native code dependence
o Lab — Unsafe native code
o Best practices for dealing with native code
e Security features
o Authentication
= Authentication basics
= Multi-factor authentication (MFA)
= Case study — The InfinityGauntlet attack
= Time-based One Time Passwords (TOTP)
o Password management
= Inbound password management
= Storing account passwords
= Password in transit
= Lab — Is just hashing passwords enough?
= Dictionary attacks and brute forcing
= Salting
= Adaptive hash functions for password
storage
= Lab — Using adaptive hash functions in C#
= Lab — Using adaptive hash functions in
Copilot
= Case study — Veeam missing authentication
and cleartext password storage
= Password policy
= NIST authenticator requirements for
memorized secrets
= Password database migration
= Hard coded passwords
= Best practices
= Lab — Hardcoded password
o Protecting sensitive information in memory
= Challenges in protecting memory
= Case study — Microsoft secret key theft via
dump files
= Storing sensitive data in memory
= Case study — KeePass password leakage
via strings
o Information exposure
= Exposure through extracted data and
aggregation
= Case study — Strava data exposure
o Platform security
= NET platform security
= Protecting .NET code and applications
= Code signing
o Denial of service
= Flooding
= Resource exhaustion
= Algorithmic complexity issues
= Regular expression denial of service
(ReDoS)
= Lab — ReDoS

= Lab — Experimenting with ReDoS in Copilot
= Dealing with ReDoS
o Using vulnerable components
= Case study — The Polyfill.io supply chain
attack
= Vulnerability management
= Lab — Finding vulnerabilities in third-party
components
o Security of Al generated code
= Practical attacks against code generation
tools
= Dependency hallucination via generative Al
= Case study — A history of GitHub Copilot
weaknesses (up to mid 2024)

Day 3
Cryptography for developers

o Cryptography basics
Crypto APIs in C#
Elementary algorithms
Hashing
= Hashing basics
= Hashing in C#
= Lab — Hashing in C# (exploring with Copilot)
o Random number generation
= Pseudo random number generators
(PRNGs)
= Cryptographically secure PRNGs
= Weak and strong PRNGs
= Using random numbers in C#
= Lab — Using random numbers in C#
(exploring with Copilot)
= Case study — Equifax credit account freeze
o Confidentiality protection
= Symmetric encryption
¢ Block ciphers
¢ Modes of operation
e Modes of operation and IV — best
practices
e Symmetric encryption in C#
e Symmetric encryption in C# with
streams
e Lab — Symmetric encryption in C#
(exploring with Copilot)
¢ Case study — Padding oracle used in
RCE against Citrix ShareFile
= Asymmetric encryption
e The RSA algorithm
* RSAin C#
e Combining symmetric and
asymmetric algorithms
= Key exchange and agreement
¢ Key exchange

o

o

o

Page 2/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

¢ Diffie-Hellman key agreement
algorithm
e Key exchange pitfalls and best
practices
e Integrity protection
= Message Authentication Code (MAC)
= Calculating HMAC in C#
= Lab — Calculating MAC in C#
= Digital signature
¢ Digital signature with RSA
Elliptic Curve Cryptography
ECC basics
Digital signature with ECC
Digital signature in C#
Lab — Digital signature with ECDSA
in C#
o Common software security weaknesses
= Code quality
e Code quality and security
= Data handling
e Initialization and cleanup
¢ Class initialization cycles
e Lab — Initialization cycles (exploring
with Copilot)
= Object oriented programming pitfalls
¢ Inheritance and overriding
e Mutability
e Lab — Mutable object (exploring with
Copilot)
= Serialization
¢ Serialization and deserialization
challenges
e Integrity — deserializing untrusted
streams
¢ Integrity — deserialization best
practices
¢ Look ahead deserialization
¢ Property Oriented Programming
(POP)
¢ Creating a POP payload
e Lab — Creating a POP payload
e Lab — Using the POP payload
e Case study — Deserialization RCE in
Veeam

o Wrap up

= Secure coding principles

= Principles of robust programming by Matt
Bishop

= Secure design principles of Saltzer and
Schroeder

= And now what?

= Software security sources and further
reading

= .NET and C# resources

= Responsible Al principles in software
development

= Generative Al — Resources and additional
guidance

Page 3/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

Centres de formation dans le monde entier

., . . .
. . . -‘ . . .
hld — .
: 3 Srope
- e L] S . ... - e ®
» . Ll .
o > L) ®
Heorin fnzrisz e . . ., .
.. 4 4 - . .
. S iy 3
1 o Wlelel]e Basi : . ot
. E * ‘ .o As5lz Paeifie .
. 9 3
. : W e
.
S - 1 E T L]
e .. Afriz
. . }
. . .
- . .
. .
2 .
.
Lapilpy Arnisrisz
.
.
.
.
Ll
L . .
L]
. .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Page 4/4


http://www.tcpdf.org

