=Fast Lane

Code responsibly with generative Al in C++ (CRWGAIC++)

ID CRWGAIC++ Prix sur demande Durée 3 jours

A qui s'adresse cette formation

C/C++ developers using Copilot or other GenAl tools

Pré-requis

General C++ and C development

Objectifs

¢ Understanding the essentials of responsible Al

¢ Getting familiar with essential cyber security concepts
e Correctly implementing various security features

¢ |dentify vulnerabilities and their consequences

e Learn the security best practices in C++

e Managing vulnerabilities in third party components

¢ Input validation approaches and principles

e All this put into the context of GitHub Copilot

Wrap up

e Secure coding principles
o Principles of robust programming by Matt Bishop
o Secure design principles of Saltzer and Schroeder
e And now what?
e Software security sources and further reading
o C and C++ resources
o Responsible Al principles in software development
o Generative Al — Resources and additional guidance

Contenu
Day 1
Coding responsibly with GenAl

e What is responsible Al?

e What is security?

e Threat and risk

¢ Cyber security threat types — the CIA triad

e Cyber security threat types — the STRIDE model

e Consequences of insecure software

e Security and responsible Al in software development
e GenAl tools in coding: Copilot, Codeium and others

Memory management vulnerabilities

¢ Assembly basics and calling conventions
o x64 assembly essentials
o Registers and addressing
Most common instructions
Calling conventions on x64
Calling convention — what it is all about
Calling convention on x64
e The stack frame
e Stacked function calls
» Buffer overflow
o Memory management and security
Buffer security issues
Buffer overflow on the stack
Buffer overflow on the stack — stack smashing
Exploitation — Hijacking the control flow
Lab — Buffer overflow 101, code reuse
o Exploitation — Arbitrary code execution
o Injecting shellcode
o Lab — Code injection, exploitation with shellcode
o Case study — Stack BOF in FriendlyName handling
of the Wemo Smart Plug
¢ Pointer manipulation
o Modification of jump tables
o Qverwriting function pointers
o Best practices and some typical mistakes
¢ Unsafe functions
o Dealing with unsafe functions
o Lab - Fixing buffer overflow (exploring with Copilot)
e Using std::string in C++
o Manipulating C-style strings in C++
o Malicious string termination
Lab — String termination confusion (exploring with
Copilot)
String length calculation mistakes

o o o

(o]

o 0 o o o

o

o

Day 2

Memory management hardening

e Securing the toolchain
o Securing the toolchain in C++
o Using FORTIFY_SOURCE
o Lab - Effects of FORTIFY
¢ AddressSanitizer (ASan)
o Using AddressSanitizer (ASan)

Page 1/3

Code responsibly with generative Al in C++ (CRWGAIC++)

o Lab — Using AddressSanitizer
e Stack smashing protection
o Detecting BoF with a stack canary
e Argument cloning
o Stack smashing protection on various platforms
o SSP changes to the prologue and epilogue
o Lab — Effects of stack smashing protection
¢ Runtime protections
o Runtime instrumentation
o Address Space Layout Randomization (ASLR)
= ASLR on various platforms
= |Lab — Effects of ASLR
= Circumventing ASLR — NOP sleds
= Circumventing ASLR — memory leakage
¢ Non-executable memory areas
o The NX bit
Write XOR Execute (W"X)
NX on various platforms
Lab — Effects of NX
NX circumvention — Code reuse attacks
Return-to-libc / arc injection
o Return Oriented Programming (ROP)
o Protection against ROP

o O o o

o

e Case study — Systematic exploitation of a MediaTek buffer

overflow

Day 3

Common software security weaknesses

e Security features
o Authentication
o Password management
= Inbound password management
= Storing account passwords
= Password in transit
= Lab - Is just hashing passwords enough?
= Dictionary attacks and brute forcing
= Salting
= Adaptive hash functions for password
storage
= Password policy
= NIST authenticator requirements for
memorized secrets
= Password database migration
e Code quality
o Code quality and security
¢ Data handling
o Type mismatch
o Lab — Type mismatch (exploring with Copilot)
o |nitialization and cleanup
= Constructors and destructors
= |nitialization of static objects
= |Lab — Initialization cycles (exploring with

Copilot)

o Unreleased resource

o Array disposal in C++

o Lab — Mixing delete and delete[] (exploring with

Copilot)

¢ Object oriented programming pitfalls
Accessibility modifiers
Are accessibility modifiers a security feature?
Inheritance and object slicing
Implementing the copy operator
The copy operator and mutability
Mutability
Mutable predicate function objects
Lab — Mutable predicate function object

o 0 o o o o

o

o

Using vulnerable components

e Security of Al generated code

¢ Practical attacks against code generation tools

e Dependency hallucination via generative Al

e Case study — A history of GitHub Copilot weaknesses (up
to mid 2024)

[Mlist]

Page 2/3

Code responsibly with generative Al in C++ (CRWGAIC++)

Centres de formation dans le monde entier

‘ L]
< I . 0 . .
. . ase >y
® 0%, — .
: 3 Srope
- e L] S - e ®
L) L) - - . %
Heorin fnzrisz e
..‘ ’ o 4 a - . .
. : ey »
1 o Wlelel]e Basi : . ot
\ E * ‘ .o As5lz Paeifie .
. . 3
4 -
5 : - I' . a
Tt .. i .
.))
. . .
o . .
.
2 .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Page 3/3

http://www.tcpdf.org

