
Code responsibly with generative AI in Java (CRWGAIJ)

ID CRWGAIJ Price on request Duration 3 days

Who should attend

Java developers using Copilot or other GenAI tools

Prerequisites

OWASP, SEI CERT, CWE and Fortify Taxonomy

Course Objectives

Understanding the essentials of responsible AI
Getting familiar with essential cyber security concepts
Understanding how cryptography supports security
Learning how to use cryptographic APIs correctly in Java
Understanding Web application security issues
Detailed analysis of the OWASP Top Ten elements
Putting Web application security in the context of Java
Going beyond the low hanging fruits
Managing vulnerabilities in third party components
All this put into the context of GitHub Copilot

Course Content

Day 1

Coding responsibly with GenAI

What is responsible AI?
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software
Security and responsible AI in software development
GenAI tools in coding: Copilot, Codeium and others
The OWASP Top Ten from Copilot’s perspective

The OWASP Top Ten 2021
A01 – Broken Access Control

Access control basics
Case study – Broken authn/authz in
Apache OFBiz
Confused deputy
Insecure direct object reference
(IDOR)
Path traversal

Lab – Insecure Direct Object
Reference
Path traversal best practices
Lab – Experimenting with path
traversal in Copilot
Authorization bypass through user-
controlled keys
Case study – Remote takeover of
Nexx garage doors and alarms
Lab – Horizontal authorization
(exploring with Copilot)
File upload

Unrestricted file upload
Good practices
Lab – Unrestricted file upload
(exploring with Copilot)
Case study – File upload
vulnerability in Netflix Genie

A02 – Cryptographic Failures
Cryptography for developers
Cryptography basics
Java Cryptographic Architecture
(JCA) in brief
Elementary algorithms
Hashing

Hashing basics
Hashing in Java
Lab – Hashing in JCA
(exploring with Copilot)

Random number generation
Pseudo random number
generators (PRNGs)
Cryptographically secure
PRNGs
Weak and strong PRNGs in
Java
Lab – Using random
numbers in Java (exploring
with Copilot)
Case study – Equifax credit
account freeze

Confidentiality protection
Symmetric encryption

Block ciphers
Modes of operation
Modes of operation
and IV – best

Page 1/5

Code responsibly with generative AI in Java (CRWGAIJ)

practices
Symmetric encryption
in Java
Symmetric encryption
in Java with streams
Lab – Symmetric
encryption in JCA
(exploring with
Copilot)

Asymmetric encryption
Combining symmetric and
asymmetric algorithms
Key exchange and
agreement

Key exchange
Diffie-Hellman key
agreement algorithm
Key exchange pitfalls
and best practices

Day 2

The OWASP Top Ten from Copilot’s perspective

A03 – Injection
Injection principles
Injection attacks

SQL injection
SQL injection basics
Lab – SQL injection
Attack techniques

Content-based blind SQL
injection
Time-based blind SQL
injection

SQL injection best practices
Input validation
Parameterized queries
Lab – Using prepared statements
Lab – Experimenting with SQL
injection in Copilot
Database defense in depth
Case study – SQL injection in Fortra
FileCatalyst

Code injection
OS command injection
OS command injection best
practices
Using Runtime.exec()
Case study – Shellshock
Lab – Shellshock
Case study – Command injection in
VMware Aria

HTML injection – Cross-site scripting (XSS)

Cross-site scripting basics
Cross-site scripting types

Persistent cross-site scripting
Reflected cross-site scripting
Client-side (DOM-based)
cross-site scripting

Lab – Stored XSS
Lab – Reflected XSS
XSS protection best practices
Protection principles – escaping
XSS protection APIs in Java
Lab – XSS fix / stored (exploring with
Copilot)
Lab – XSS fix / reflected (exploring
with Copilot)
Additional protection layers –
defense in depth
Case study – XSS vulnerabilities in
DrayTek Vigor routers

A04 – Insecure Design
The STRIDE model of threats
Secure design principles of Saltzer and
Schroeder

Economy of mechanism
Fail-safe defaults
Complete mediation
Open design
Separation of privilege
Least privilege
Least common mechanism
Psychological acceptability

Client-side security
Frame sandboxing
Cross-Frame Scripting (XFS) attacks
Lab – Clickjacking
Clickjacking beyond hijacking a click
Clickjacking protection best practices
Lab – Using CSP to prevent clickjacking
(exploring with Copilot)

A05 – Security Misconfiguration
Configuration principles
XML entities

DTD and the entities
Entity expansion
External Entity Attack (XXE)
File inclusion with external entities
Server-Side Request Forgery with
external entities
Lab – External entity attack
Preventing XXE
Lab – Prohibiting DTD
Case study – XXE vulnerability in
Ivanti products
Lab – Experimenting with XXE in

Page 2/5

Code responsibly with generative AI in Java (CRWGAIJ)

Copilot

Day 3

The OWASP Top Ten from Copilot’s
perspective

A06 – Vulnerable and Outdated
Components

Using vulnerable components
Untrusted functionality import
Case study – The Polyfill.io supply
chain attack
Vulnerability management
Lab – Finding vulnerabilities in third-
party components
Security of AI generated code
Practical attacks against code
generation tools
Dependency hallucination via
generative AI
Case study – A history of GitHub
Copilot weaknesses (up to mid
2024)

A07 – Identification and Authentication
Failures

Authentication
Authentication basics
Multi-factor authentication
(MFA)
Case study – The
InfinityGauntlet attack

Password management
Inbound password
management
Storing account passwords
Lab – Is just hashing
passwords enough?
Dictionary attacks and brute
forcing
Salting
Adaptive hash functions for
password storage
Lab – Using adaptive hash
functions in JCA
Lab – Using adaptive hash
functions in Copilot
Password policy
NIST authenticator
requirements for memorized
secrets

A08 – Software and Data Integrity Failures
Integrity protection

Message Authentication
Code (MAC)

Calculating MAC in Java
Lab – Calculating MAC in
JCA

Digital signature
Elliptic Curve Cryptography
ECC basics
Digital signature with ECC
Digital signature in Java
Lab – Digital signature with
ECDSA in JCA

Subresource integrity
Importing JavaScript
Lab – Importing JavaScript
(exploring with Copilot)
Case study – The British
Airways data breach

Insecure deserialization
Serialization and
deserialization challenges
Integrity – deserializing
untrusted streams
Integrity – deserialization
best practices
Look ahead deserialization
Property Oriented
Programming (POP)
Creating a POP payload
Lab – Creating a POP
payload
Lab – Using the POP
payload
Case study – Deserialization
RCEs in NextGen Mirth
Connect

A09 – Security Logging and Monitoring
Failures

Logging and monitoring principles
Log forging
Log forging – best practices
Case study – Log interpolation in
log4j
Case study – The Log4Shell
vulnerability (CVE-2021-44228)
Case study – Log4Shell follow-ups
(CVE-2021-45046,
CVE-2021-45105)
Lab – Log4Shell

A10 – Server-side Request Forgery (SSRF)
Server-side Request Forgery
(SSRF)
Case study – SSRF in Ivanti
Connect Secure

Wrap up
Secure coding principles

Page 3/5

Code responsibly with generative AI in Java (CRWGAIJ)

Principles of robust programming by
Matt Bishop
And now what?
Software security sources and
further reading
Java resources
Responsible AI principles in software
development
Generative AI – Resources and
additional guidance

Page 4/5

Code responsibly with generative AI in Java (CRWGAIJ)

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Page 5/5

http://www.tcpdf.org

