=Fast Lane

Code responsibly with generative Al in C# (desktop applications)
(CRWGAIC)

ID CRWGAIC Price CHF 2,250.—excl. VAT)

Duration 3 days

Who should attend

C# developers using Copilot or other GenAl tools

Prerequisites

General C# development

Course Objectives

Understanding the essentials of responsible Al
Getting familiar with essential cyber security concepts
Input validation approaches and principles

Identify vulnerabilities and their consequences

Learn the security best practices in C#

Correctly implementing various security features
Managing vulnerabilities in third party components
Understanding how cryptography supports security

Learning how to use cryptographic APIs correctly in C#

All this put into the context of GitHub Copilot

Course Content

Day 1

Coding responsibly with GenAl

What is responsible Al?
What is security?
Threat and risk
Cyber security threat types — the CIA triad
Consequences of insecure software
Security and responsible Al in software development
GenAl tools in coding: Copilot, Codeium and others
Input validation
o Input validation principles
o Denylists and allowlists
What to validate — the attack surface
Where to validate — defense in depth

o O o

When to validate — validation vs transformations

e Injection

o

o

o 0 o o o

o

Code injection

OS command injection

Lab — Command injection

OS command injection best practices

Avoiding command injection with the right APIs
Lab — Command injection best practices

Lab — Experimenting with command injection in
Copilot

Case study — Command injection in Ruckus

¢ Integer handling problems

o

o o0 o o

Representing signed numbers

Integer visualization

Integer overflow

Lab — Integer overflow

Signed / unsigned confusion

Case study — The Stockholm Stock Exchange
Lab — Signed / unsigned confusion

Lab — Experimenting with signed / unsigned
confusion in Copilot

Integer truncation

Best practices

Upcasting

Precondition testing

Postcondition testing

Integer handling in C#

Lab — Checked arithmetics

Lab — Experimenting with integer overflow in Copilot

¢ Files and streams

o

o

o

o

o

o

Day 2

Path traversal

Lab — Path traversal

Additional challenges in Windows

Case study — File spoofing in WinRAR

Path traversal best practices

Lab — Path canonicalization

Lab — Experimenting with path traversal in Copilot

Input validation

¢ Unsafe reflection

o

o

o

Reflection without validation
Lab — Unsafe reflection
Lab — Experimenting with unsafe reflection in

Page 1/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

Copilot
e Unsafe native code
o Native code dependence
o Lab — Unsafe native code
o Best practices for dealing with native code
e Security features
o Authentication
= Authentication basics
= Multi-factor authentication (MFA)
= Case study — The InfinityGauntlet attack
= Time-based One Time Passwords (TOTP)
o Password management
= Inbound password management
= Storing account passwords
= Password in transit
= Lab — Is just hashing passwords enough?
= Dictionary attacks and brute forcing
= Salting
= Adaptive hash functions for password
storage
= Lab — Using adaptive hash functions in C#
= Lab — Using adaptive hash functions in
Copilot
= Case study — Veeam missing authentication
and cleartext password storage
= Password policy
= NIST authenticator requirements for
memorized secrets
= Password database migration
= Hard coded passwords
= Best practices
= Lab — Hardcoded password
o Protecting sensitive information in memory
= Challenges in protecting memory
= Case study — Microsoft secret key theft via
dump files
= Storing sensitive data in memory
= Case study — KeePass password leakage
via strings
o Information exposure
= Exposure through extracted data and
aggregation
= Case study — Strava data exposure
o Platform security
= NET platform security
= Protecting .NET code and applications
= Code signing
o Denial of service
= Flooding
= Resource exhaustion
= Algorithmic complexity issues
= Regular expression denial of service
(ReDoS)
= Lab — ReDoS

= Lab — Experimenting with ReDoS in Copilot
= Dealing with ReDoS
o Using vulnerable components
= Case study — The Polyfill.io supply chain
attack
= Vulnerability management
= Lab — Finding vulnerabilities in third-party
components
o Security of Al generated code
= Practical attacks against code generation
tools
= Dependency hallucination via generative Al
= Case study — A history of GitHub Copilot
weaknesses (up to mid 2024)

Day 3
Cryptography for developers

o Cryptography basics
Crypto APIs in C#
Elementary algorithms
Hashing
= Hashing basics
= Hashing in C#
= Lab — Hashing in C# (exploring with Copilot)
o Random number generation
= Pseudo random number generators
(PRNGs)
= Cryptographically secure PRNGs
= Weak and strong PRNGs
= Using random numbers in C#
= Lab — Using random numbers in C#
(exploring with Copilot)
= Case study — Equifax credit account freeze
o Confidentiality protection
= Symmetric encryption
¢ Block ciphers
¢ Modes of operation
e Modes of operation and IV — best
practices
e Symmetric encryption in C#
e Symmetric encryption in C# with
streams
e Lab — Symmetric encryption in C#
(exploring with Copilot)
¢ Case study — Padding oracle used in
RCE against Citrix ShareFile
= Asymmetric encryption
e The RSA algorithm
* RSAin C#
e Combining symmetric and
asymmetric algorithms
= Key exchange and agreement
¢ Key exchange

o

o

o

Page 2/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

¢ Diffie-Hellman key agreement
algorithm
e Key exchange pitfalls and best
practices
e Integrity protection
= Message Authentication Code (MAC)
= Calculating HMAC in C#
= Lab — Calculating MAC in C#
= Digital signature
¢ Digital signature with RSA
Elliptic Curve Cryptography
ECC basics
Digital signature with ECC
Digital signature in C#
Lab — Digital signature with ECDSA
in C#
o Common software security weaknesses
= Code quality
e Code quality and security
= Data handling
e Initialization and cleanup
¢ Class initialization cycles
e Lab — Initialization cycles (exploring
with Copilot)
= Object oriented programming pitfalls
¢ Inheritance and overriding
e Mutability
e Lab — Mutable object (exploring with
Copilot)
= Serialization
¢ Serialization and deserialization
challenges
e Integrity — deserializing untrusted
streams
¢ Integrity — deserialization best
practices
¢ Look ahead deserialization
¢ Property Oriented Programming
(POP)
¢ Creating a POP payload
e Lab — Creating a POP payload
e Lab — Using the POP payload
e Case study — Deserialization RCE in
Veeam

o Wrap up

= Secure coding principles

= Principles of robust programming by Matt
Bishop

= Secure design principles of Saltzer and
Schroeder

= And now what?

= Software security sources and further
reading

= .NET and C# resources

= Responsible Al principles in software
development

= Generative Al — Resources and additional
guidance

Page 3/4



Code responsibly with generative Al in C# (desktop applications) (CRWGAIC)

Training Centres worldwide

., . . .
. . . -‘ . . .
hld — .
: 3 Srope
- e L] S . ... - e ®
» . Ll .
o > L) ®
Heorin fnzrisz e . . ., .
.. 4 4 - . .
. S iy 3
1 o Wlelel]e Basi : . ot
. E * ‘ .o As5lz Paeifie .
. 9 3
. : W e
.
S - 1 E T L]
e .. Afriz
. . }
. . .
- . .
. .
2 .
.
Lapilpy Arnisrisz
.
.
.
.
Ll
L . .
L]
. .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Page 4/4


http://www.tcpdf.org

