
Code responsibly with generative AI in C# (desktop applications)
(CRWGAIC)

ID CRWGAIC Price on request Duration 3 days

Who should attend

C# developers using Copilot or other GenAI tools

Prerequisites

General C# development

Course Objectives

Understanding the essentials of responsible AI
Getting familiar with essential cyber security concepts
Input validation approaches and principles
Identify vulnerabilities and their consequences
Learn the security best practices in C#
Correctly implementing various security features
Managing vulnerabilities in third party components
Understanding how cryptography supports security
Learning how to use cryptographic APIs correctly in C#
All this put into the context of GitHub Copilot

Course Content

Day 1

Coding responsibly with GenAI

What is responsible AI?
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software
Security and responsible AI in software development
GenAI tools in coding: Copilot, Codeium and others
Input validation

Input validation principles
Denylists and allowlists
What to validate – the attack surface
Where to validate – defense in depth
When to validate – validation vs transformations

Injection
Code injection
OS command injection
Lab – Command injection
OS command injection best practices
Avoiding command injection with the right APIs
Lab – Command injection best practices
Lab – Experimenting with command injection in
Copilot
Case study – Command injection in Ruckus

Integer handling problems
Representing signed numbers
Integer visualization
Integer overflow
Lab – Integer overflow
Signed / unsigned confusion
Case study – The Stockholm Stock Exchange
Lab – Signed / unsigned confusion
Lab – Experimenting with signed / unsigned
confusion in Copilot
Integer truncation
Best practices
Upcasting
Precondition testing
Postcondition testing
Integer handling in C#
Lab – Checked arithmetics
Lab – Experimenting with integer overflow in Copilot

Files and streams
Path traversal
Lab – Path traversal
Additional challenges in Windows
Case study – File spoofing in WinRAR
Path traversal best practices
Lab – Path canonicalization
Lab – Experimenting with path traversal in Copilot

Day 2

Input validation

Unsafe reflection
Reflection without validation
Lab – Unsafe reflection
Lab – Experimenting with unsafe reflection in

Page 1/4

Code responsibly with generative AI in C# (desktop applications) (CRWGAIC)

Copilot
Unsafe native code

Native code dependence
Lab – Unsafe native code
Best practices for dealing with native code

Security features
Authentication

Authentication basics
Multi-factor authentication (MFA)
Case study – The InfinityGauntlet attack
Time-based One Time Passwords (TOTP)

Password management
Inbound password management
Storing account passwords
Password in transit
Lab – Is just hashing passwords enough?
Dictionary attacks and brute forcing
Salting
Adaptive hash functions for password
storage
Lab – Using adaptive hash functions in C#
Lab – Using adaptive hash functions in
Copilot
Case study – Veeam missing authentication
and cleartext password storage
Password policy
NIST authenticator requirements for
memorized secrets
Password database migration
Hard coded passwords
Best practices
Lab – Hardcoded password

Protecting sensitive information in memory
Challenges in protecting memory
Case study – Microsoft secret key theft via
dump files
Storing sensitive data in memory
Case study – KeePass password leakage
via strings

Information exposure
Exposure through extracted data and
aggregation
Case study – Strava data exposure

Platform security
.NET platform security
Protecting .NET code and applications
Code signing

Denial of service
Flooding
Resource exhaustion
Algorithmic complexity issues
Regular expression denial of service
(ReDoS)
Lab – ReDoS

Lab – Experimenting with ReDoS in Copilot
Dealing with ReDoS

Using vulnerable components
Case study – The Polyfill.io supply chain
attack
Vulnerability management
Lab – Finding vulnerabilities in third-party
components

Security of AI generated code
Practical attacks against code generation
tools
Dependency hallucination via generative AI
Case study – A history of GitHub Copilot
weaknesses (up to mid 2024)

Day 3

Cryptography for developers

Cryptography basics
Crypto APIs in C#
Elementary algorithms
Hashing

Hashing basics
Hashing in C#
Lab – Hashing in C# (exploring with Copilot)

Random number generation
Pseudo random number generators
(PRNGs)
Cryptographically secure PRNGs
Weak and strong PRNGs
Using random numbers in C#
Lab – Using random numbers in C#
(exploring with Copilot)
Case study – Equifax credit account freeze

Confidentiality protection
Symmetric encryption

Block ciphers
Modes of operation
Modes of operation and IV – best
practices
Symmetric encryption in C#
Symmetric encryption in C# with
streams
Lab – Symmetric encryption in C#
(exploring with Copilot)
Case study – Padding oracle used in
RCE against Citrix ShareFile

Asymmetric encryption
The RSA algorithm
RSA in C#
Combining symmetric and
asymmetric algorithms

Key exchange and agreement
Key exchange

Page 2/4

Code responsibly with generative AI in C# (desktop applications) (CRWGAIC)

Diffie-Hellman key agreement
algorithm
Key exchange pitfalls and best
practices

Integrity protection
Message Authentication Code (MAC)
Calculating HMAC in C#
Lab – Calculating MAC in C#
Digital signature

Digital signature with RSA
Elliptic Curve Cryptography
ECC basics
Digital signature with ECC
Digital signature in C#
Lab – Digital signature with ECDSA
in C#

Common software security weaknesses
Code quality

Code quality and security
Data handling

Initialization and cleanup
Class initialization cycles
Lab – Initialization cycles (exploring
with Copilot)

Object oriented programming pitfalls
Inheritance and overriding
Mutability
Lab – Mutable object (exploring with
Copilot)

Serialization
Serialization and deserialization
challenges
Integrity – deserializing untrusted
streams
Integrity – deserialization best
practices
Look ahead deserialization
Property Oriented Programming
(POP)
Creating a POP payload
Lab – Creating a POP payload
Lab – Using the POP payload
Case study – Deserialization RCE in
Veeam

Wrap up
Secure coding principles
Principles of robust programming by Matt
Bishop
Secure design principles of Saltzer and
Schroeder
And now what?
Software security sources and further
reading
.NET and C# resources

Responsible AI principles in software
development
Generative AI – Resources and additional
guidance

Page 3/4

Code responsibly with generative AI in C# (desktop applications) (CRWGAIC)

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Page 4/4

http://www.tcpdf.org

