

ID ASIP Price on request Duration 3 days

Who should attend

Python API developers

Prerequisites

General Python development

Course Objectives

- · Getting familiar with essential cyber security concepts
- Understanding API security issues
- Detailed analysis of the OWASP API Security Top Ten elements
- · Putting API security in the context of Python
- Going beyond the low hanging fruits
- Managing vulnerabilities in third party components
- Input validation approaches and principles

Course Content

Day 1

- · Cyber security basics
 - · What is security?
 - Threat and risk
 - Cyber security threat types the CIA triad
 - Consequences of insecure software
- OWASP API Security Top Ten
 - o OWASP API Security Top 10 2023
- API1 Broken Object Level Authorization
 - · Confused deputy
 - Insecure direct object reference (IDOR)
 - Lab Insecure Direct Object Reference
 - · Authorization bypass through user-controlled keys
 - Case study Remote takeover of Nexx garage doors and alarms
 - Lab Horizontal authorization
 - File upload
 - · Unrestricted file upload
 - Good practices
 - · Lab Unrestricted file upload
- API2 Broken Authentication

- Authentication basics
- Multi-factor authentication (MFA)
- Case study The InfinityGauntlet attack
- · Passwordless solutions
- Time-based One Time Passwords (TOTP)
- Authentication weaknesses
- Spoofing on the Web
- · Password management
- · Storing account passwords
- · Password in transit
- Lab Is just hashing passwords enough?
- o Dictionary attacks and brute forcing
- Salting
- · Adaptive hash functions for password storage
- Lab Using adaptive hash functions in Python
- Using password cracking tools
- Password cracking in Windows
- Password change
- Password recovery issues
- Password recovery best practices
- ∘ Lab Password reset weakness
- Case study Facebook account takeover via recovery code
- Case study GitLab account takeover
- · Anti-automation
- Password policy
- NIST authenticator requirements for memorized secrets
- Password hardening
- Using passphrases
- Password database migration
- (Mis)handling None passwords

Day 2

- API3 Broken Object Property Level Authorization
 - Information exposure
 - Exposure through extracted data and aggregation
 - · Case study Strava data exposure
 - System information leakage
 - Leaking system information
 - o Information exposure best practices
 - o Secrets management
 - Hard coded passwords
 - Best practices
 - Lab Hardcoded password
 - Protecting sensitive information in memory

- Challenges in protecting memory
- Case study Microsoft secret key theft via dump files
- API4 Unrestricted Resource Consumption
 - Denial of service
 - Flooding
 - · Resource exhaustion
 - · Sustained client engagement
 - Infinite loop
 - Economic Denial of Sustainability (EDoS)
 - Algorithmic complexity issues
 - Regular expression denial of service (ReDoS)
 - ∘ Lab ReDoS
 - · Dealing with ReDoS
 - Case study ReDoS vulnerabilities in Python
- API5 Broken Function Level Authorization
 - Authorization
 - · Access control basics
 - Access control types
 - Missing or improper authorization
 - · Failure to restrict URL access
 - Cross-site Request Forgery (CSRF)
 - Lab Cross-site Request Forgery
 - CSRF best practices
 - CSRF defense in depth
 - Lab CSRF protection with tokens
- API6 Unrestricted Access to Sensitive Business Flows
 - Security by design
 - The STRIDE model of threats
 - Secure design principles of Saltzer and Schroeder
 - Economy of mechanism
 - · Fail-safe defaults
 - Complete mediation
 - o Open design
 - Separation of privilege
 - Least privilege
 - · Least common mechanism
 - · Psychological acceptability
 - · Logging and monitoring
 - Logging and monitoring principles
 - Insufficient logging
 - Case study Plaintext passwords at Facebook
 - Log forging
 - · Web log forging
 - Lab Log forging
 - · Log forging best practices
 - Logging best practices
 - Monitoring best practices
- API7 Server Side Request Forgery
 - Server-side Request Forgery (SSRF)
 - · Case study SSRF in Ivanti Connect Secure
- API8 Security Misconfiguration
 - Information exposure through error reporting
 - Information leakage via error pages

- Lab Flask information leakage
- Case study Information leakage via errors in Apache Superset
- · Cookie security
- Cookie attributes
- Same Origin Policy
- Simple request
- Preflight request
- Cross-Origin Resource Sharing (CORS)
- Lab Same-origin policy demo
- Configuring XML parsers
- DTD and the entities
- Entity expansion
- External Entity Attack (XXE)
- · File inclusion with external entities
- Server-Side Request Forgery with external entities
- · Lab External entity attack
- · Preventing XXE
- ∘ Lab Prohibiting DTD
- · Case study XXE vulnerability in Ivanti products

Day 3

- API9 Improper Inventory Management
 - · Documentation blindspots
 - Dataflow blindspots
 - · Using vulnerable components
 - Untrusted functionality import
 - Malicious packages in Python
 - Case study The Polyfill.io supply chain attack
 - Vulnerability management
 - Lab Finding vulnerabilities in third-party components
- API10 Unsafe Consumption of APIs
 - Input validation
 - · Input validation principles
 - Denylists and allowlists
 - Case study Denylist failure in urllib.parse.urlparse()
 - What to validate the attack surface
 - · Where to validate defense in depth
 - When to validate validation vs transformations
 - Output sanitization
 - Encoding challenges
 - Unicode challenges
 - Validation with regex
 - Injection
 - · Injection principles
 - Injection attacks
 - SQL injection
 - SQL injection basics
 - Lab SQL injection
 - · Attack techniques
 - Content-based blind SQL injection

- Time-based blind SQL injection
- SQL injection best practices
- · Input validation
- Parameterized queries
- Lab Using prepared statements
- o Database defense in depth
- Case study SQL injection against US airport security
- Code injection
- Code injection via input()
- OS command injection
- Lab Command injection
- OS command injection best practices
- o Avoiding command injection with the right APIs
- Lab Command injection best practices
- Case study Shellshock
- ∘ Lab Shellshock
- Case study Command injection in Ivanti security appliances
- Open redirects and forwards
- Open redirects and forwards best practices
- o Files and streams
- Path traversal
- · Lab Path traversal
- Additional challenges in Windows
- Case study File spoofing in WinRAR
- Path traversal best practices
- ∘ Lab Path canonicalization
- Wrap up
- Secure coding principles
- Principles of robust programming by Matt Bishop
- o Secure design principles of Saltzer and Schroeder
- And now what?
- Software security sources and further reading
- Python resources

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3 CH-8304 Wallisellen Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch