
API security in Python (ASIP)

ID ASIP Price CHF 2,250.— (excl. VAT) Duration 3 days

Who should attend

Python API developers

Prerequisites

General Python development

Course Objectives

Getting familiar with essential cyber security concepts
Understanding API security issues
Detailed analysis of the OWASP API Security Top Ten
elements
Putting API security in the context of Python
Going beyond the low hanging fruits
Managing vulnerabilities in third party components
Input validation approaches and principles

Course Content

Day 1

Cyber security basics
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Consequences of insecure software

OWASP API Security Top Ten
OWASP API Security Top 10 2023

API1 – Broken Object Level Authorization
Confused deputy
Insecure direct object reference (IDOR)
Lab – Insecure Direct Object Reference
Authorization bypass through user-controlled keys
Case study – Remote takeover of Nexx garage
doors and alarms
Lab – Horizontal authorization
File upload
Unrestricted file upload
Good practices
Lab – Unrestricted file upload

API2 – Broken Authentication

Authentication basics
Multi-factor authentication (MFA)
Case study – The InfinityGauntlet attack
Passwordless solutions
Time-based One Time Passwords (TOTP)
Authentication weaknesses
Spoofing on the Web
Password management
Storing account passwords
Password in transit
Lab – Is just hashing passwords enough?
Dictionary attacks and brute forcing
Salting
Adaptive hash functions for password storage
Lab – Using adaptive hash functions in Python
Using password cracking tools
Password cracking in Windows
Password change
Password recovery issues
Password recovery best practices
Lab – Password reset weakness
Case study – Facebook account takeover via
recovery code
Case study – GitLab account takeover
Anti-automation
Password policy
NIST authenticator requirements for memorized
secrets
Password hardening
Using passphrases
Password database migration
(Mis)handling None passwords

Day 2

API3 – Broken Object Property Level Authorization
Information exposure
Exposure through extracted data and aggregation
Case study – Strava data exposure
System information leakage
Leaking system information
Information exposure best practices
Secrets management
Hard coded passwords
Best practices
Lab – Hardcoded password
Protecting sensitive information in memory

Page 1/4

API security in Python (ASIP)

Challenges in protecting memory
Case study – Microsoft secret key theft via dump
files

API4 – Unrestricted Resource Consumption
Denial of service
Flooding
Resource exhaustion
Sustained client engagement
Infinite loop
Economic Denial of Sustainability (EDoS)
Algorithmic complexity issues
Regular expression denial of service (ReDoS)
Lab – ReDoS
Dealing with ReDoS
Case study – ReDoS vulnerabilities in Python

API5 – Broken Function Level Authorization
Authorization
Access control basics
Access control types
Missing or improper authorization
Failure to restrict URL access
Cross-site Request Forgery (CSRF)
Lab – Cross-site Request Forgery
CSRF best practices
CSRF defense in depth
Lab – CSRF protection with tokens

API6 – Unrestricted Access to Sensitive Business Flows
Security by design
The STRIDE model of threats
Secure design principles of Saltzer and Schroeder
Economy of mechanism
Fail-safe defaults
Complete mediation
Open design
Separation of privilege
Least privilege
Least common mechanism
Psychological acceptability
Logging and monitoring
Logging and monitoring principles
Insufficient logging
Case study – Plaintext passwords at Facebook
Log forging
Web log forging
Lab – Log forging
Log forging – best practices
Logging best practices
Monitoring best practices

API7 – Server Side Request Forgery
Server-side Request Forgery (SSRF)
Case study – SSRF in Ivanti Connect Secure

API8 – Security Misconfiguration
Information exposure through error reporting
Information leakage via error pages

Lab – Flask information leakage
Case study – Information leakage via errors in
Apache Superset
Cookie security
Cookie attributes
Same Origin Policy
Simple request
Preflight request
Cross-Origin Resource Sharing (CORS)
Lab – Same-origin policy demo
Configuring XML parsers
DTD and the entities
Entity expansion
External Entity Attack (XXE)
File inclusion with external entities
Server-Side Request Forgery with external entities
Lab – External entity attack
Preventing XXE
Lab – Prohibiting DTD
Case study – XXE vulnerability in Ivanti products

Day 3

API9 – Improper Inventory Management
Documentation blindspots
Dataflow blindspots
Using vulnerable components
Untrusted functionality import
Malicious packages in Python
Case study – The Polyfill.io supply chain attack
Vulnerability management
Lab – Finding vulnerabilities in third-party
components

API10 – Unsafe Consumption of APIs
Input validation
Input validation principles
Denylists and allowlists
Case study – Denylist failure in
urllib.parse.urlparse()
What to validate – the attack surface
Where to validate – defense in depth
When to validate – validation vs transformations
Output sanitization
Encoding challenges
Unicode challenges
Validation with regex
Injection
Injection principles
Injection attacks
SQL injection
SQL injection basics
Lab – SQL injection
Attack techniques
Content-based blind SQL injection

Page 2/4

API security in Python (ASIP)

Time-based blind SQL injection
SQL injection best practices
Input validation
Parameterized queries
Lab – Using prepared statements
Database defense in depth
Case study – SQL injection against US airport
security
Code injection
Code injection via input()
OS command injection
Lab – Command injection
OS command injection best practices
Avoiding command injection with the right APIs
Lab – Command injection best practices
Case study – Shellshock
Lab – Shellshock
Case study – Command injection in Ivanti security
appliances
Open redirects and forwards
Open redirects and forwards – best practices
Files and streams
Path traversal
Lab – Path traversal
Additional challenges in Windows
Case study – File spoofing in WinRAR
Path traversal best practices
Lab – Path canonicalization
Wrap up
Secure coding principles
Principles of robust programming by Matt Bishop
Secure design principles of Saltzer and Schroeder
And now what?
Software security sources and further reading
Python resources

Page 3/4

API security in Python (ASIP)

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Page 4/4

http://www.tcpdf.org

