

ID ASIJ Price on request Duration 3 days

Who should attend

Java API developers

Prerequisites

General Java development

Course Objectives

- · Getting familiar with essential cyber security concepts
- · Understanding API security issues
- Detailed analysis of the OWASP API Security Top Ten elements
- · Putting API security in the context of Java
- Going beyond the low hanging fruits
- Managing vulnerabilities in third party components
- Input validation approaches and principles

Course Content

Day 1

- · Cyber security basics
 - · What is security?
 - Threat and risk
 - Cyber security threat types the CIA triad
 - Consequences of insecure software
- OWASP API Security Top Ten
 - o OWASP API Security Top 10 2023
 - API1 Broken Object Level Authorization
 - Confused deputy
 - Insecure direct object reference (IDOR)
 - Lab Insecure Direct Object Reference
 - · Authorization bypass through user-controlled keys
 - Case study Remote takeover of Nexx garage doors and alarms
 - Lab Horizontal authorization
 - · File upload
 - · Unrestricted file upload
 - Good practices
 - · Lab Unrestricted file upload
 - Case study File upload vulnerability in Netflix

Genie

- API2 Broken Authentication
 - Authentication basics
 - Multi-factor authentication (MFA)
 - Case study The InfinityGauntlet attack
 - o Time-based One Time Passwords (TOTP)
 - · Password management
 - · Storing account passwords
 - Password in transit
 - Lab Is just hashing passwords enough?
 - o Dictionary attacks and brute forcing
 - Salting
 - · Adaptive hash functions for password storage
 - · Lab Using adaptive hash functions in JCA
 - Using password cracking tools
 - Password cracking in Windows
 - Password change
 - Password recovery issues
 - Password recovery best practices
 - Lab Password reset weakness
 - Case study Facebook account takeover via recovery code
 - Case study GitLab account takeover
 - Anti-automation
 - Password policy
 - NIST authenticator requirements for memorized secrets
 - Password hardening
 - Using passphrases
 - Password database migration
 - o (Mis)handling null passwords

Day 2

- API3 Broken Object Property Level Authorization
 - o Information exposure
 - · Exposure through extracted data and aggregation
 - · Case study Strava data exposure
 - System information leakage
 - Leaking system information
 - o Information exposure best practices
 - Secrets management
 - Hard coded passwords
 - Best practices
 - Lab Hardcoded password
 - Protecting sensitive information in memory
 - · Challenges in protecting memory

- Case study Microsoft secret key theft via dump files
- Storing sensitive data in memory
- · Lab Using secret-handling classes in Java
- API4 Unrestricted Resource Consumption
 - Denial of service
 - Flooding
 - Resource exhaustion
 - · Sustained client engagement
 - o Denial of service problems in Java
 - Infinite loop
 - Economic Denial of Sustainability (EDoS)
 - · Algorithmic complexity issues
 - Regular expression denial of service (ReDoS)
 - ∘ Lab ReDoS
 - · Dealing with ReDoS
- API5 Broken Function Level Authorization
 - Authorization
 - · Access control basics
 - Access control types
 - · Missing or improper authorization
 - · Case study Broken authn/authz in Apache OFBiz
 - Failure to restrict URL access
- API6 Unrestricted Access to Sensitive Business Flows
 - · Security by design
 - The STRIDE model of threats
 - · Secure design principles of Saltzer and Schroeder
 - Economy of mechanism
 - Fail-safe defaults
 - $\circ \ \ \text{Complete mediation}$
 - Open design
 - · Separation of privilege
 - Least privilege
 - · Least common mechanism
 - Psychological acceptability
 - · Logging and monitoring
 - Logging and monitoring principles
 - Insufficient logging
 - Case study Plaintext passwords at Facebook
 - Log forging
 - Web log forging
 - Log forging best practices
 - · Case study Log interpolation in log4j
 - Case study The Log4Shell vulnerability (CVE-2021-44228)
 - Case study Log4Shell follow-ups (CVE-2021-45046, CVE-2021-45105)
 - Lab Log4Shell
 - Logging best practices
 - Monitoring best practices
- API7 Server Side Request Forgery
 - Server-side Request Forgery (SSRF)
 - Case study SSRF in Ivanti Connect Secure
- API8 Security Misconfiguration

- Information exposure through error reporting
- · Information leakage via error pages
- Case study Information leakage via errors in Apache Superset
- Same Origin Policy
- Simple request
- · Preflight request
- Cross-Origin Resource Sharing (CORS)
- · Configuring XML parsers
- · DTD and the entities
- · Entity expansion
- External Entity Attack (XXE)
- · File inclusion with external entities
- Server-Side Request Forgery with external entities
- · Lab External entity attack
- Preventing XXE
- ∘ Lab Prohibiting DTD
- · Case study XXE vulnerability in Ivanti products

Day 3

- API9 Improper Inventory Management
 - Documentation blindspots
 - Dataflow blindspots
 - · Using vulnerable components
 - · Untrusted functionality import
 - · Case study The Polyfill.io supply chain attack
 - Vulnerability management
 - Lab Finding vulnerabilities in third-party components
- API10 Unsafe Consumption of APIs
 - Input validation
 - Input validation principles
 - Denylists and allowlists
 - What to validate the attack surface
 - · Where to validate defense in depth
 - · When to validate validation vs transformations
 - Output sanitization
 - Encoding challenges
 - Unicode challenges
 - Validation with regex
- Injection
 - Injection principles
 - Injection attacks
 - · SQL injection
 - SQL injection basics
 - ∘ Lab SQL injection
 - Attack techniques
 - · Content-based blind SQL injection
 - Time-based blind SQL injection
 - · SQL injection best practices
 - Input validation
 - · Parameterized queries
 - Lab Using prepared statements

- Database defense in depth
- Case study SQL injection in Fortra FileCatalyst
- · Code injection
- OS command injection
- OS command injection best practices
- Using Runtime.exec()
- · Case study Shellshock
- Lab Shellshock
- Case study Command injection in VMware Aria
- Open redirects and forwards
 - o Open redirects and forwards best practices
- · Files and streams
 - Path traversal
 - Lab Path traversal
 - Additional challenges in Windows
 - ∘ Case study File spoofing in WinRAR
 - Case study RCE via path traversal in Apache OFBiz
 - Path traversal best practices
 - Lab Path canonicalization
- Unsafe reflection
 - · Reflection without validation
 - Lab Unsafe reflection
- Wrap up
 - Secure coding principles
 - o Principles of robust programming by Matt Bishop
 - o Secure design principles of Saltzer and Schroeder
 - And now what?
 - Software security sources and further reading
 - Java resources

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3 CH-8304 Wallisellen Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch