

API security in Java (ASIJ)

ID ASIJ **Price** CHF 2,250.—(excl. VAT) **Duration** 3 days

Who should attend

Java API developers

Prerequisites

General Java development

Course Objectives

- Getting familiar with essential cyber security concepts
- Understanding API security issues
- Detailed analysis of the OWASP API Security Top Ten elements
- Putting API security in the context of Java
- Going beyond the low hanging fruits
- Managing vulnerabilities in third party components
- Input validation approaches and principles

Course Content

Day 1

- Cyber security basics
 - What is security?
 - Threat and risk
 - Cyber security threat types – the CIA triad
 - Consequences of insecure software
- OWASP API Security Top Ten
 - OWASP API Security Top 10 2023
 - API1 – Broken Object Level Authorization
 - Confused deputy
 - Insecure direct object reference (IDOR)
 - Lab – Insecure Direct Object Reference
 - Authorization bypass through user-controlled keys
 - Case study – Remote takeover of NEXX garage doors and alarms
 - Lab – Horizontal authorization
 - File upload
 - Unrestricted file upload
 - Good practices
 - Lab – Unrestricted file upload
 - Case study – File upload vulnerability in Netflix

Genie

- API2 – Broken Authentication
 - Authentication basics
 - Multi-factor authentication (MFA)
 - Case study – The InfinityGauntlet attack
 - Time-based One Time Passwords (TOTP)
 - Password management
 - Storing account passwords
 - Password in transit
 - Lab – Is just hashing passwords enough?
 - Dictionary attacks and brute forcing
 - Salting
 - Adaptive hash functions for password storage
 - Lab – Using adaptive hash functions in JCA
 - Using password cracking tools
 - Password cracking in Windows
 - Password change
 - Password recovery issues
 - Password recovery best practices
 - Lab – Password reset weakness
 - Case study – Facebook account takeover via recovery code
 - Case study – GitLab account takeover
 - Anti-automation
 - Password policy
 - NIST authenticator requirements for memorized secrets
 - Password hardening
 - Using passphrases
 - Password database migration
 - (Mis)handling null passwords

Day 2

- API3 – Broken Object Property Level Authorization
 - Information exposure
 - Exposure through extracted data and aggregation
 - Case study – Strava data exposure
 - System information leakage
 - Leaking system information
 - Information exposure best practices
 - Secrets management
 - Hard coded passwords
 - Best practices
 - Lab – Hardcoded password
 - Protecting sensitive information in memory
 - Challenges in protecting memory

API security in Java (ASIJ)

- Case study – Microsoft secret key theft via dump files
- Storing sensitive data in memory
- Lab – Using secret-handling classes in Java
- API4 – Unrestricted Resource Consumption
 - Denial of service
 - Flooding
 - Resource exhaustion
 - Sustained client engagement
 - Denial of service problems in Java
 - Infinite loop
 - Economic Denial of Sustainability (EDoS)
 - Algorithmic complexity issues
 - Regular expression denial of service (ReDoS)
 - Lab – ReDoS
 - Dealing with ReDoS
- API5 – Broken Function Level Authorization
 - Authorization
 - Access control basics
 - Access control types
 - Missing or improper authorization
 - Case study – Broken authn/authz in Apache OFBiz
 - Failure to restrict URL access
- API6 – Unrestricted Access to Sensitive Business Flows
 - Security by design
 - The STRIDE model of threats
 - Secure design principles of Saltzer and Schroeder
 - Economy of mechanism
 - Fail-safe defaults
 - Complete mediation
 - Open design
 - Separation of privilege
 - Least privilege
 - Least common mechanism
 - Psychological acceptability
 - Logging and monitoring
 - Logging and monitoring principles
 - Insufficient logging
 - Case study – Plaintext passwords at Facebook
 - Log forging
 - Web log forging
 - Log forging – best practices
 - Case study – Log interpolation in log4j
 - Case study – The Log4Shell vulnerability (CVE-2021-44228)
 - Case study – Log4Shell follow-ups (CVE-2021-45046, CVE-2021-45105)
 - Lab – Log4Shell
 - Logging best practices
 - Monitoring best practices
- API7 – Server Side Request Forgery
 - Server-side Request Forgery (SSRF)
 - Case study – SSRF in Ivanti Connect Secure
- API8 – Security Misconfiguration
 - Information exposure through error reporting
 - Information leakage via error pages
 - Case study – Information leakage via errors in Apache Superset
 - Same Origin Policy
 - Simple request
 - Preflight request
 - Cross-Origin Resource Sharing (CORS)
 - Configuring XML parsers
 - DTD and the entities
 - Entity expansion
 - External Entity Attack (XXE)
 - File inclusion with external entities
 - Server-Side Request Forgery with external entities
 - Lab – External entity attack
 - Preventing XXE
 - Lab – Prohibiting DTD
 - Case study – XXE vulnerability in Ivanti products

Day 3

- API9 – Improper Inventory Management
 - Documentation blindspots
 - Dataflow blindspots
 - Using vulnerable components
 - Untrusted functionality import
 - Case study – The Polyfill.io supply chain attack
 - Vulnerability management
 - Lab – Finding vulnerabilities in third-party components
- API10 – Unsafe Consumption of APIs
 - Input validation
 - Input validation principles
 - Denylists and allowlists
 - What to validate – the attack surface
 - Where to validate – defense in depth
 - When to validate – validation vs transformations
 - Output sanitization
 - Encoding challenges
 - Unicode challenges
 - Validation with regex
- Injection
 - Injection principles
 - Injection attacks
 - SQL injection
 - SQL injection basics
 - Lab – SQL injection
 - Attack techniques
 - Content-based blind SQL injection
 - Time-based blind SQL injection
 - SQL injection best practices
 - Input validation
 - Parameterized queries
 - Lab – Using prepared statements

API security in Java (ASIJ)

- Database defense in depth
- Case study – SQL injection in Fortra FileCatalyst
- Code injection
- OS command injection
- OS command injection best practices
- Using Runtime.exec()
- Case study – Shellshock
- Lab – Shellshock
- Case study – Command injection in VMware Aria
- Open redirects and forwards
 - Open redirects and forwards – best practices
- Files and streams
 - Path traversal
 - Lab – Path traversal
 - Additional challenges in Windows
 - Case study – File spoofing in WinRAR
 - Case study – RCE via path traversal in Apache OFBiz
 - Path traversal best practices
 - Lab – Path canonicalization
- Unsafe reflection
 - Reflection without validation
 - Lab – Unsafe reflection
- Wrap up
 - Secure coding principles
 - Principles of robust programming by Matt Bishop
 - Secure design principles of Saltzer and Schroeder
 - And now what?
 - Software security sources and further reading
 - Java resources

API security in Java (ASIJ)

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, <https://www.flane.ch>