
Code responsibly with generative AI in C++ (CRWGAIC++)

ID CRWGAIC++ Price on request Duration 3 days

Who should attend

C/C++ developers using Copilot or other GenAI tools

Prerequisites

General C++ and C development

Course Objectives

Understanding the essentials of responsible AI
Getting familiar with essential cyber security concepts
Correctly implementing various security features
Identify vulnerabilities and their consequences
Learn the security best practices in C++
Managing vulnerabilities in third party components
Input validation approaches and principles
All this put into the context of GitHub Copilot

Wrap up

Secure coding principles
Principles of robust programming by Matt Bishop
Secure design principles of Saltzer and Schroeder

And now what?
Software security sources and further reading

C and C++ resources
Responsible AI principles in software development
Generative AI – Resources and additional guidance

Course Content

Day 1

Coding responsibly with GenAI

What is responsible AI?
What is security?
Threat and risk
Cyber security threat types – the CIA triad
Cyber security threat types – the STRIDE model
Consequences of insecure software
Security and responsible AI in software development
GenAI tools in coding: Copilot, Codeium and others

Memory management vulnerabilities

Assembly basics and calling conventions
x64 assembly essentials
Registers and addressing
Most common instructions
Calling conventions on x64
Calling convention – what it is all about
Calling convention on x64

The stack frame
Stacked function calls
Buffer overflow

Memory management and security
Buffer security issues
Buffer overflow on the stack
Buffer overflow on the stack – stack smashing
Exploitation – Hijacking the control flow
Lab – Buffer overflow 101, code reuse
Exploitation – Arbitrary code execution
Injecting shellcode
Lab – Code injection, exploitation with shellcode
Case study – Stack BOF in FriendlyName handling
of the Wemo Smart Plug

Pointer manipulation
Modification of jump tables
Overwriting function pointers
Best practices and some typical mistakes

Unsafe functions
Dealing with unsafe functions
Lab – Fixing buffer overflow (exploring with Copilot)

Using std::string in C++
Manipulating C-style strings in C++
Malicious string termination
Lab – String termination confusion (exploring with
Copilot)
String length calculation mistakes

Day 2

Memory management hardening

Securing the toolchain
Securing the toolchain in C++
Using FORTIFY_SOURCE
Lab – Effects of FORTIFY

AddressSanitizer (ASan)
Using AddressSanitizer (ASan)

Page 1/3

Code responsibly with generative AI in C++ (CRWGAIC++)

Lab – Using AddressSanitizer
Stack smashing protection

Detecting BoF with a stack canary
Argument cloning
Stack smashing protection on various platforms
SSP changes to the prologue and epilogue
Lab – Effects of stack smashing protection

Runtime protections
Runtime instrumentation
Address Space Layout Randomization (ASLR)

ASLR on various platforms
Lab – Effects of ASLR
Circumventing ASLR – NOP sleds
Circumventing ASLR – memory leakage

Non-executable memory areas
The NX bit
Write XOR Execute (W^X)
NX on various platforms
Lab – Effects of NX
NX circumvention – Code reuse attacks
Return-to-libc / arc injection
Return Oriented Programming (ROP)
Protection against ROP

Case study – Systematic exploitation of a MediaTek buffer
overflow

Day 3

Common software security weaknesses

Security features
Authentication
Password management

Inbound password management
Storing account passwords
Password in transit
Lab – Is just hashing passwords enough?
Dictionary attacks and brute forcing
Salting
Adaptive hash functions for password
storage
Password policy
NIST authenticator requirements for
memorized secrets
Password database migration

Code quality
Code quality and security

Data handling
Type mismatch
Lab – Type mismatch (exploring with Copilot)
Initialization and cleanup

Constructors and destructors
Initialization of static objects
Lab – Initialization cycles (exploring with

Copilot)
Unreleased resource
Array disposal in C++
Lab – Mixing delete and delete[] (exploring with
Copilot)

Object oriented programming pitfalls
Accessibility modifiers
Are accessibility modifiers a security feature?
Inheritance and object slicing
Implementing the copy operator
The copy operator and mutability
Mutability
Mutable predicate function objects
Lab – Mutable predicate function object

Using vulnerable components

Security of AI generated code
Practical attacks against code generation tools
Dependency hallucination via generative AI
Case study – A history of GitHub Copilot weaknesses (up
to mid 2024)

[/list]

Page 2/3

Code responsibly with generative AI in C++ (CRWGAIC++)

Training Centres worldwide

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Page 3/3

http://www.tcpdf.org

