=Fast Lane

Responsible Al in software development (RAIISD)

ID RAIISD Preis CHF 750.— (exkl. Mwst) Dauer 1 Tag

Zielgruppe

Alle Personen, die an der Nutzung von GenAl oder der
Entwicklung von maschinellem Lernen beteiligt sind

Voraussetzungen

Allgemeine Entwicklung

Kursziele

¢ Verschiedene Aspekte der verantwortungsvollen Al
verstehen

¢ Wie man generative Kl verantwortungsvoll in der
Softwareentwicklung einsetzt

¢ Schnelles Engineering fir optimale Ergebnisse

¢ Wie man generative Kl im gesamten SDLC einsetzt

Kursinhalt

Eine kurze Geschichte der Kiinstlichen Intelligenz

¢ Die Urspriinge der KI

¢ Neuronale Netze und "Wahrscheinlichkeitsmaschinen"
¢ Friihe ML-Codierungstools

¢ Die KI-Codierrevolution der 2020er Jahre

e Bedrohungen fiur ML-Systeme

Verantwortungsvolle Al

¢ Was ist verantwortungsvolle KI?

¢ Rechenschaftspflicht und Transparenz

¢ Verringerung schéadlicher Verzerrungen

e Gultigkeit und Zuverlassigkeit

e Glltigkeit und Zuverlassigkeit - Nicht-Determinismus des
Codes

e Demonstration - Experimentieren mit Gultigkeit und
Zuverlassigkeit in Copilot

e Erklarbarkeit und Interpretierbarkeit

¢ Sicherheit, Schutz, Privatsphare und Widerstandsfahigkeit

¢ Sicherheit und verantwortungsvolle Kl in der
Softwareentwicklung

GenAl verantwortungsvoll in der Softwareentwicklung
einsetzen

Grundlagen der LLM-Codeerzeugung
Grundlegende Bausteine und Konzepte
Eingabeaufforderung fiir Vorlagen
Systemaufforderungen zur Kl-gesteuerten Codierung
GenAl-Werkzeuge fir die Kodierung: Copilot, Codeium und
andere
Kann KI... Ihre Produktivitat steigern?
Kann KI... die "langweiligen Teile" Ubernehmen?
Kann Al... griindlicher sein?
Uberpriifung des generierten Codes - der Blackbox-Blues
Die Gefahr von Halluzinationen
Kann KI... dir beibringen, wie man (besser) programmiert?
Demonstration - Experimentieren mit einer unbekannten
APl in Copilot
Die Auswirkungen von GenAl auf die
Programmierkenntnisse
Einige weitere langfristige Auswirkungen der Nutzung von
GenAl
Wo die KI-Codegenerierung nicht gut abschneidet
Schnelles Engineering
o Warum ist ein guter Souffleur so wichtig?
o Schaffung des Kontexts fur generative Kl
o Null-Schuss-, Ein-Schuss- und Wenig-Schuss-
Eingabeaufforderung
o Vernunftbasiertes Prompt-Engineering,
Gedankenkette
o Demonstration - Experimentieren mit
Eingabeaufforderungen in Copilot
o Durchsetzung und Einhaltung von Token-Limits
o Aufforderungsmuster
= Prompt-Muster und Prompt-Priming
= Die 6 Kategorien von Aufforderungsmustern
= Aufforderungsmuster: Meta-Sprache
erstellen
= Aufforderungsmuster: Persona
= Aufforderungsmuster: Visualisierungs-
Generator
= Aufforderungsmuster: Faktencheck-Liste
= Aufforderungsmuster: Alternative
Ldsungsansatze
= Aufforderungsmuster:
Verweigerungshrecher
= Aufforderungsmuster: Umgekehrte
Interaktion

Seite 1/3

Responsible Al in software development (RAIISD)

= Aufforderungsmuster: Kontext-Manager
o Einige weitere Souffleur-Anséatze

= | east-to-Most und Self-Planning: Zerlegung
komplexer Aufgaben

= Demonstration - Aufgabenzerlegung mit
Copilot

= Prompt-Engineering-Techniken fiir
Verfeinerung und Iteration

= Einheitstests, TDD und GenAl

= Demonstration - Testbasierte
Codegenerierung mit Copilot

Integration von generativer Kl in den SDLC

¢ Einsatz von GenAl lber die Codegenerierung hinaus

¢ Einsatz von Al bei der Anforderungsspezifikation

¢ Aufforderungsmuster fir die Erfassung von Anforderungen

¢ Softwareentwicklung und Ki

e Prompt-Muster fir den Softwareentwurf

e Demonstration - Anforderungserfassung und API-Design
mit Copilot

¢ Einsatz von Al bei der Umsetzung

e Prompt-Muster fir die Umsetzung

e Demonstration - Auffinden versteckter Annahmen mit
Copilot

¢ Einsatz von Al bei Tests und QA

e Einsatz von Al bei der Wartung

e Aufforderungsmuster fur das Refactoring

e Demonstration - Experimentieren mit Code-Refactoring in
Copilot

¢ Aufforderungsmuster fur die Simulation von
Anderungsantragen

Sicherheit von Kl-generiertem Code

¢ Sicherheit von Kl-generiertem Code
¢ Praktische Angriffe auf Tools zur Codegenerierung
¢ Abhéangigkeits-Halluzination durch generative KI
e Fallstudie - Eine Geschichte der Schwachen von GitHub
Copilot (bis Mitte 2024)
¢ Ein Beispiel fiir eine Schwachstelle
o Pfaduberquerung
o Demonstration - Pfadiiberquerung
o Beispiele fur die Pfadiiberquerung
o Bewahrte Verfahren zur Pfadiiberquerung
o Demonstration - Kanonisierung von Pfaden
o Demonstration - Experimentieren mit der
Pfadverfolgung in Copilot

Zusammenfassung und Schlussfolgerungen
¢ Verantwortungsvolle Kl-Prinzipien in der

Softwareentwicklung
e Generative Al - Ressourcen und zusétzliche Anleitungen

Seite 2/3

Responsible Al in software development (RAIISD)

Weltweite Trainingscenter

L] . h -.
o . g L
. . il '. . .
® 0%, — .
: 3 Srope
- e L] S - e ®
» . Ll .
o > L) ®
Heorin fnzrisz e . . ., .
.. 4 a - . .
. S iy 3
1 o Wlelel]e Basi : . ot
. E * ‘ .o b As5lz Paeifie .
2 L]
. : R Y, .
S - 1 E T L]
e .. Afriz
. . }
. . .
- . .
. .
2 .
.
Lapilpy Arnisrisz
.
.
.
.
Ll
L . .
L]
. .

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Seite 3/3

http://www.tcpdf.org

