=Fast Lane

Code responsibly with generative Al in Python (CRWGAIP)

ID CRWGAIP Preis CHF 2'250.— (exkl. Mwst) Dauer 3 Tage

Zielgruppe

Python-Entwickler, die Copilot oder andere GenAl-Tools
verwenden

Voraussetzungen

Allgemeine Python- und Webentwicklung

Kursziele

¢ Die Grundlagen der verantwortungsvollen Kl verstehen

¢ Vertrautmachen mit grundlegenden Konzepten der
Cybersicherheit

¢ Verstehen, wie Kryptographie die Sicherheit unterstitzt

e Lernen, wie man kryptografische APIs in Python richtig
verwendet

¢ Versténdnis von Sicherheitsfragen bei Webanwendungen

e Detaillierte Analyse der OWASP Top Ten Elemente

¢ Die Sicherheit von Webanwendungen im Kontext von
Python

« Uber die niedrig hangenden Friichte hinausgehen

¢ Verwaltung von Schwachstellen in Komponenten von
Drittanbietern

¢ All dies im Kontext von GitHub Copilot

Kursinhalt
Tag 1

Verantwortungsbewusst kodieren mit GenAl

¢ Was ist verantwortungsvolle KI?
* Was ist Sicherheit?
e Bedrohung und Risiko
¢ Arten von Cybersicherheitsbedrohungen - die CIA-Triade
¢ Folgen von unsicherer Software
¢ Sicherheit und verantwortungsvolle Kl in der
Softwareentwicklung
¢ GenAl-Werkzeuge fir die Kodierung: Copilot, Codeium und
andere
e Die OWASP Top Ten aus der Sicht von Copilot
o Die OWASP Top Ten 2021
= AQ1 - Defekte Zugangskontrolle

e Grundlagen der Zugangskontrolle
e Keine Beschrankung des URL-
Zugriffs
¢ Verwirrter Abgeordneter
¢ Unsichere direkte Objektreferenz
(IDOR)
e Pfaduberquerung
 Ubung - Unsichere direkte
Objektreferenz
e Bewahrte Verfahren zur
Pfaduberquerung
 Ubung - Experimentieren mit der
Pfadverfolgung in Copilot
e Berechtigungsumgehung durch
benutzergesteuerte Schlissel
¢ Fallbeispiel - Fernibernahme von
Nexx Garagentoren und
Alarmanlagen
e Labor - Horizontale Genehmigung
(Erkundung mit Copilot)
¢ Hochladen von Dateien
o Uneingeschrankter Datei-
Upload
o Bewahrte Praktiken
o Ubung - Uneingeschrankter
Datei-Upload (Erkundung mit
Copilot)

= AO2 - Kryptographische Ausfélle

¢ Kryptographie flir Entwickler
e Grundlagen der Kryptographie
e Kryptographie in Python
¢ Elementare Algorithmen
e Hashing
o Grundlagen des Hashings
e Hashing in Python
o Ubung - Hashing in Python
(Erkundung mit Copilot)
e Erzeugung von Zufallszahlen
o Pseudo-
Zufallszahlengeneratoren
(PRNGS)
o Kryptografisch sichere
PRNGs
o Schwache PRNGs
o Verwendung von
Zufallszahlen
o Ubung - Verwendung von

Seite 1/5



Code responsibly with generative Al in Python (CRWGAIP)

Zufallszahlen in Python
(Erkundung mit Copilot)
o Ubung - Sichere PRNG-
Verwendung in Copilot
e Schutz der Vertraulichkeit
o Symmetrische
Verschlisselung
= Blockchiffren
= Betriebsarten
= Betriebsarten und IV
- bewahrte Verfahren
= Symmetrische
Verschlusselung in
Python
= Ubung -
Symmetrische
Verschlisselung in
Python (Erkundung
mit Copilot)
o Asymmetrische
Verschlusselung
o Kombination von
symmetrischen und
asymmetrischen Algorithmen

Tag 2
Die OWASP Top Ten aus der Sicht von Copilot

e AO0S3 - Injektion
e Injektionsprinzipien
o Injektionsangriffe
= SQL-Einschleusung

¢ Grundlagen der SQL-Injektion

¢ Ubung - SQL-Injektion

e Angriffsmethoden

o Inhaltsbasierte blinde SQL-
Injektion
o Zeitbasierte blinde SQL-
Injektion

e Bewahrte Praktiken zur SQL-
Einschleusung

« Uberpriifung der Eingaben

e Parametrisierte Abfragen

« Ubung - Verwendung vorbereiteter
Erklarungen

 Ubung - Experimentieren mit SQL-
Injection in Copilot

¢ Datenbankverteidigung in der Tiefe

¢ Fallstudie - SQL-Injection gegen US-
Flughafensicherheit

= Code-Einspritzung
e Code-Injektion uber input()
e OS-Befehlsinjektion

 Ubung - Befehlsinjektion
Bewaéhrte Praktiken zur Injektion von
OS-Befehlen
¢ Vermeidung von Befehlseingaben
mit den richtigen APIs
 Ubung - Bewéhrte Praktiken der
Befehlseingabe
 Ubung - Experimentieren mit der
Befehlsinjektion in Copilot
Fallstudie - Shellshock
e Labor - Shellshock
¢ Fallstudie - Befehlsinjektion in Ivanti-
Sicherheitsanwendungen
= HTML-Injektion - Cross-Site-Scripting (XSS)
¢ Grundlagen des Cross-Site-Scripting
¢ Cross-Site-Scripting-Typen
o Anhaltendes Cross-Site-
Scripting
o Reflektiertes Cross-Site-
Scripting
o Client-seitiges (DOM-
basiertes) Cross-Site-
Scripting
* Ubung - Gespeicherte XSS
e Labor - Reflektiertes XSS
e Fallstudie - XSS zu RCE in Teltonika-
Routern
e Bewahrte Praktiken zum Schutz vor
XSS
¢ Schutzprinzipien - Flucht
e XSS-Schutz-APls in Python
e XSS-Schutz in Jinja2
Lab - XSS fix / gespeichert
(Erkundung mit Copilot)
e Labor - XSS-Behebung / reflektiert
(Erkundung mit Copilot)
¢ Fallstudie - XSS-Schwachstellen in
DrayTek Vigor-Routern
o A04 - Unsicheres Design
= Das STRIDE-Modell der Bedrohungen
= Sichere Gestaltungsprinzipien von Saltzer
und Schroeder
e Wirtschaftlichkeit des Mechanismus
e Ausfallsichere Standardwerte
¢ Vollstandige Mediation
e Open design
e Trennung der Privilegien
e Geringstes Privileg
e Am wenigsten verbreiteter
Mechanismus
¢ Psychologische Akzeptanz
= Client-seitige Sicherheit
¢ Politik der gleichen Herkunft
¢ Einfacher Antrag

Seite 2/5



Code responsibly with generative Al in Python (CRWGAIP)

¢ Preflight-Anfrage

e Ursprungsubergreifende
Ressourcennutzung (CORS)

e Labor - Demo zur Politik des
gleichen Herkunftslandes

¢ Rahmen-Sandboxing

¢ Cross-Frame-Scripting-Angriffe
(XFS)

e Labor - Clickjacking

¢ Clickjacking geht tber die
Entfihrung eines Klicks hinaus

e Bewadhrte Praktiken zum Schutz vor
Clickjacking

 Ubung - Verwendung von CSP zur
Verhinderung von Clickjacking
(Erkundung mit Copilot)

Tag 3
Die OWASP Top Ten aus der Sicht von Copilot

o AO05 - Fehlkonfiguration der Sicherheit
= Grundséatze der Konfiguration
= Server-Fehlkonfiguration
= Bewdhrte Verfahren fur die Python-
Konfiguration
= Flask konfigurieren
= Cookie-Sicherheit
¢ Cookie-Attribute
= XML-Entitaten
e DTD und die Entitaten
e Erweiterung der Entitat
e Angriff auf externe Entitéaten (XXE)
e Einbeziehung von Dateien mit
externen Stellen
¢ Server-Side Request Forgery mit
externen Entitaten
e Labor - Angriff einer externen Einheit
e Verhinderung von XXE
e Labor - Verbot der DTD
e Fallstudie - XXE-Schwachstelle in
Ivanti-Produkten
e Labor - Experimentieren mit XXE in
Copilot
o A06 - Anfallige und veraltete Komponenten
= Verwendung anfalliger Komponenten
= Import von nicht vertrauenswirdigen
Funktionen
= Bosartige Pakete in Python
= Fallstudie - Der Angriff auf die Lieferkette
von Polyfill.io
= Management von Schwachstellen
= Ubung - Auffinden von Schwachstellen in
Komponenten von Drittanbietern
= Sicherheit von Kl-generiertem Code

= Praktische Angriffe auf Tools zur
Codegenerierung
= Abhéangigkeits-Halluzination durch
generative Kil
= Fallstudie - Eine Geschichte der Schwéachen
von GitHub Copilot (bis Mitte 2024)
o AQ7 - Fehler bei der Identifizierung und
Authentifizierung
= Authentifizierung
e Grundlagen der Authentifizierung
e Multi-Faktor-Authentifizierung (MFA)
e Fallstudie - Der InfinityGauntlet-
Angriff
* Zeitbasierte Einmal-Passworter
(TOTP)
= Passwortverwaltung
¢ Verwaltung eingehender Passworter
e Speichern von Kontopasswortern
e Passwort im Transit
e Labor - Reicht das Hashing von
Passwortern aus?
¢ Worterbuchangriffe und Brute-
Forcing
e Salzen
e Adaptive Hash-Funktionen fir die
Passwortspeicherung
¢ Ubung - Verwendung adaptiver
Hash-Funktionen in Python
 Ubung - Verwendung adaptiver
Hash-Funktionen in Copilot
e Passwort-Politik
¢ NIST-Authentifikator-Anforderungen
fur gespeicherte Geheimnisse
e Migration der Passwort-Datenbank
o AO08 - Fehler in der Software und Datenintegritét
= Schutz der Integritat
¢ Nachrichten-Authentifizierungs-Code
(MAC)
¢ HMAC-Berechnung in Python
 Ubung - MAC-Berechnung in Python
= Digitale Unterschrift
e Digitale Unterschrift in Python
= |ntegritat der Subressource
e JavaScript importieren
 Ubung - JavaScript importieren (mit
Copilot erkunden)
e Fallstudie - Die
Datenschutzverletzung bei British
Airways
o A10 - Server-seitige Anforderungsfalschung (SSRF)
= Server-seitige Anforderungsféalschung
(SSRF)
= Fallbeispiel - SSRF in Ivanti Connect Secure
o Einpacken

Seite 3/5



Code responsibly with generative Al in Python (CRWGAIP)

= Grundséatze der sicheren Kodierung

= Grundséatze der robusten Programmierung
von Matt Bishop

= Und was nun?

= Quellen zur Softwaresicherheit und
weiterfihrende Literatur

= Python-Ressourcen

= Verantwortungsvolle KI-Prinzipien in der
Softwareentwicklung

= Generative Al - Ressourcen und zusétzliche
Anleitungen

Seite 4/5



Code responsibly with generative Al in Python (CRWGAIP)

Weltweite Trainingscenter

- 0 PussizaiCls
.' o * . * .- .
l..' = . © .
Ll
° ® sen,* _ *
. - =5
¢ . .-‘ ._"i'_*ru_p_
: £ o ‘c“. 3 .. . .
o > L) ®
Heorin fnzrisz e . . ., .
.. 4 4 - . .
. S iy 3
1 o Wlelel]e Basi : . ot
. E * ‘ .o b As5lz Paeifie .
2 L]
. . W Y, .
S - 1 E T L]
e .. Afriz
. . }
. . .
. . .
. .
2 .
.
Lapilpy Arnisrisz
.
.
.
.
Ll
L . .
L]
.

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https:/lwww.flane.ch

Seite 5/5


http://www.tcpdf.org

