

ID CRWGAIP Preis auf Anfrage Dauer 3 Tage

Zielgruppe

Python-Entwickler, die Copilot oder andere GenAl-Tools verwenden

Voraussetzungen

Allgemeine Python- und Webentwicklung

Kursziele

- Die Grundlagen der verantwortungsvollen KI verstehen
- Vertrautmachen mit grundlegenden Konzepten der Cybersicherheit
- · Verstehen, wie Kryptographie die Sicherheit unterstützt
- Lernen, wie man kryptografische APIs in Python richtig verwendet
- Verständnis von Sicherheitsfragen bei Webanwendungen
- Detaillierte Analyse der OWASP Top Ten Elemente
- Die Sicherheit von Webanwendungen im Kontext von Python
- Über die niedrig hängenden Früchte hinausgehen
- Verwaltung von Schwachstellen in Komponenten von Drittanbietern
- All dies im Kontext von GitHub Copilot

Kursinhalt

Tag 1

Verantwortungsbewusst kodieren mit GenAl

- Was ist verantwortungsvolle KI?
- Was ist Sicherheit?
- · Bedrohung und Risiko
- Arten von Cybersicherheitsbedrohungen die CIA-Triade
- Folgen von unsicherer Software
- Sicherheit und verantwortungsvolle KI in der Softwareentwicklung
- GenAl-Werkzeuge f
 ür die Kodierung: Copilot, Codeium und andere
- Die OWASP Top Ten aus der Sicht von Copilot
 - Die OWASP Top Ten 2021
 - A01 Defekte Zugangskontrolle

- Grundlagen der Zugangskontrolle
- Keine Beschränkung des URL-Zugriffs
- Verwirrter Abgeordneter
- Unsichere direkte Objektreferenz (IDOR)
- Pfadüberquerung
- Übung Unsichere direkte Objektreferenz
- Bewährte Verfahren zur Pfadüberquerung
- Übung Experimentieren mit der Pfadverfolgung in Copilot
- Berechtigungsumgehung durch benutzergesteuerte Schlüssel
- Fallbeispiel Fernübernahme von Nexx Garagentoren und Alarmanlagen
- Labor Horizontale Genehmigung (Erkundung mit Copilot)
- Hochladen von Dateien
 - Uneingeschränkter Datei-Upload
 - Bewährte Praktiken
 - Übung Uneingeschränkter Datei-Upload (Erkundung mit Copilot)
- A02 Kryptographische Ausfälle
 - Kryptographie für Entwickler
 - Grundlagen der Kryptographie
 - Kryptographie in Python
 - Elementare Algorithmen
 - Hashing
 - · Grundlagen des Hashings
 - Hashing in Python
 - Übung Hashing in Python (Erkundung mit Copilot)
 - Erzeugung von Zufallszahlen
 - Pseudo-Zufallszahlengeneratoren (PRNGs)
 - Kryptografisch sichere PRNGs
 - Schwache PRNGs
 - Verwendung von Zufallszahlen
 - Übung Verwendung von

- Zufallszahlen in Python (Erkundung mit Copilot)
- Übung Sichere PRNG-Verwendung in Copilot
- Schutz der Vertraulichkeit
 - Symmetrische Verschlüsselung
 - Blockchiffren
 - Betriebsarten
 - Betriebsarten und IV
 - bewährte Verfahren
 - Symmetrische Verschlüsselung in Python
 - Übung -Symmetrische Verschlüsselung in Python (Erkundung mit Copilot)
 - Asymmetrische Verschlüsselung
 - Kombination von symmetrischen und asymmetrischen Algorithmen

Tag 2

Die OWASP Top Ten aus der Sicht von Copilot

- A03 Injektion
 - Injektionsprinzipien
 - · Injektionsangriffe
 - SQL-Einschleusung
 - Grundlagen der SQL-Injektion
 - Übung SQL-Injektion
 - Angriffsmethoden
 - Inhaltsbasierte blinde SQL-Injektion
 - Zeitbasierte blinde SQL-Injektion
 - Bewährte Praktiken zur SQL-Einschleusung
 - Überprüfung der Eingaben
 - Parametrisierte Abfragen
 - Übung Verwendung vorbereiteter Erklärungen
 - Übung Experimentieren mit SQL-Injection in Copilot
 - Datenbankverteidigung in der Tiefe
 - Fallstudie SQL-Injection gegen US-Flughafensicherheit
 - Code-Einspritzung
 - Code-Injektion über input()
 - OS-Befehlsinjektion

- Übung Befehlsinjektion
- Bewährte Praktiken zur Injektion von OS-Befehlen
- Vermeidung von Befehlseingaben mit den richtigen APIs
- Übung Bewährte Praktiken der Befehlseingabe
- Übung Experimentieren mit der Befehlsinjektion in Copilot
- Fallstudie Shellshock
- · Labor Shellshock
- Fallstudie Befehlsinjektion in Ivanti-Sicherheitsanwendungen
- HTML-Injektion Cross-Site-Scripting (XSS)
 - Grundlagen des Cross-Site-Scripting
 - Cross-Site-Scripting-Typen
 - Anhaltendes Cross-Site-Scripting
 - Reflektiertes Cross-Site-Scripting
 - Client-seitiges (DOMbasiertes) Cross-Site-Scripting
 - Übung Gespeicherte XSS
 - Labor Reflektiertes XSS
 - Fallstudie XSS zu RCE in Teltonika-Routern
 - Bewährte Praktiken zum Schutz vor XSS
 - Schutzprinzipien Flucht
 - XSS-Schutz-APIs in Python
 - XSS-Schutz in Jinja2
 - Lab XSS fix / gespeichert (Erkundung mit Copilot)
 - Labor XSS-Behebung / reflektiert (Erkundung mit Copilot)
 - Fallstudie XSS-Schwachstellen in DrayTek Vigor-Routern
- A04 Unsicheres Design
 - Das STRIDE-Modell der Bedrohungen
 - Sichere Gestaltungsprinzipien von Saltzer und Schroeder
 - Wirtschaftlichkeit des Mechanismus
 - Ausfallsichere Standardwerte
 - Vollständige Mediation
 - Open design
 - Trennung der Privilegien
 - Geringstes Privileg
 - Am wenigsten verbreiteter Mechanismus
 - Psychologische Akzeptanz
 - Client-seitige Sicherheit
 - Politik der gleichen Herkunft
 - Einfacher Antrag

- · Preflight-Anfrage
- Ursprungsübergreifende Ressourcennutzung (CORS)
- Labor Demo zur Politik des gleichen Herkunftslandes
- Rahmen-Sandboxing
- Cross-Frame-Scripting-Angriffe (XFS)
- · Labor Clickjacking
- Clickjacking geht über die Entführung eines Klicks hinaus
- Bewährte Praktiken zum Schutz vor Clickjacking
- Übung Verwendung von CSP zur Verhinderung von Clickjacking (Erkundung mit Copilot)

Tag 3

Die OWASP Top Ten aus der Sicht von Copilot

- o A05 Fehlkonfiguration der Sicherheit
 - Grundsätze der Konfiguration
 - Server-Fehlkonfiguration
 - Bewährte Verfahren für die Python-Konfiguration
 - Flask konfigurieren
 - Cookie-Sicherheit
 - Cookie-Attribute
 - XML-Entitäten
 - DTD und die Entitäten
 - Erweiterung der Entität
 - Angriff auf externe Entitäten (XXE)
 - Einbeziehung von Dateien mit externen Stellen
 - Server-Side Request Forgery mit externen Entitäten
 - Labor Angriff einer externen Einheit
 - Verhinderung von XXE
 - Labor Verbot der DTD
 - Fallstudie XXE-Schwachstelle in Ivanti-Produkten
 - Labor Experimentieren mit XXE in Copilot
- A06 Anfällige und veraltete Komponenten
 - Verwendung anfälliger Komponenten
 - Import von nicht vertrauenswürdigen Funktionen
 - Bösartige Pakete in Python
 - Fallstudie Der Angriff auf die Lieferkette von Polyfill.io
 - Management von Schwachstellen
 - Übung Auffinden von Schwachstellen in Komponenten von Drittanbietern
 - Sicherheit von KI-generiertem Code

- Praktische Angriffe auf Tools zur Codegenerierung
- Abhängigkeits-Halluzination durch generative KI
- Fallstudie Eine Geschichte der Schwächen von GitHub Copilot (bis Mitte 2024)
- A07 Fehler bei der Identifizierung und Authentifizierung
 - Authentifizierung
 - Grundlagen der Authentifizierung
 - Multi-Faktor-Authentifizierung (MFA)
 - Fallstudie Der InfinityGauntlet-Angriff
 - Zeitbasierte Einmal-Passwörter (TOTP)
 - Passwortverwaltung
 - Verwaltung eingehender Passwörter
 - Speichern von Kontopasswörtern
 - Passwort im Transit
 - Labor Reicht das Hashing von Passwörtern aus?
 - Wörterbuchangriffe und Brute-Forcing
 - Salzen
 - Adaptive Hash-Funktionen für die Passwortspeicherung
 - Übung Verwendung adaptiver Hash-Funktionen in Python
 - Übung Verwendung adaptiver Hash-Funktionen in Copilot
 - Passwort-Politik
 - NIST-Authentifikator-Anforderungen für gespeicherte Geheimnisse
 - Migration der Passwort-Datenbank
- A08 Fehler in der Software und Datenintegrität
 - Schutz der Integrität
 - Nachrichten-Authentifizierungs-Code (MAC)
 - HMAC-Berechnung in Python
 - Übung MAC-Berechnung in Python
 - Digitale Unterschrift
 - Digitale Unterschrift in Python
 - Integrität der Subressource
 - JavaScript importieren
 - Übung JavaScript importieren (mit Copilot erkunden)
 - Fallstudie Die Datenschutzverletzung bei British Airways
- A10 Server-seitige Anforderungsfälschung (SSRF)
 - Server-seitige Anforderungsfälschung (SSRF)
 - Fallbeispiel SSRF in Ivanti Connect Secure
- Einpacken

- Grundsätze der sicheren Kodierung
- Grundsätze der robusten Programmierung von Matt Bishop
- Und was nun?
- Quellen zur Softwaresicherheit und weiterführende Literatur
- Python-Ressourcen
- Verantwortungsvolle KI-Prinzipien in der Softwareentwicklung
- Generative AI Ressourcen und zusätzliche Anleitungen

Weltweite Trainingscenter

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3 CH-8304 Wallisellen Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch