

ID CRWGAIJ Preis auf Anfrage Dauer 3 Tage

Zielgruppe

Java-Entwickler, die Copilot oder andere GenAl-Tools verwenden

Voraussetzungen

OWASP, SEI CERT, CWE und Fortify Taxonomien

Kursziele

- Die Grundlagen der verantwortungsvollen KI verstehen
- Vertrautmachen mit grundlegenden Konzepten der Cybersicherheit
- Verstehen, wie Kryptographie die Sicherheit unterstützt
- Lernen, wie man kryptografische APIs in Java richtig verwendet
- Verständnis von Sicherheitsfragen bei Webanwendungen
- Detaillierte Analyse der OWASP Top Ten Elemente
- Die Sicherheit von Webanwendungen im Kontext von Java
- Über die niedrig hängenden Früchte hinausgehen
- Verwaltung von Schwachstellen in Komponenten von Drittanbietern
- · All dies im Kontext von GitHub Copilot

Kursinhalt

Tag 1

Verantwortungsbewusst kodieren mit GenAl

- Was ist verantwortungsvolle KI?
- Was ist Sicherheit?
- · Bedrohung und Risiko
- Arten von Cybersicherheitsbedrohungen die CIA-Triade
- Folgen von unsicherer Software
- Sicherheit und verantwortungsvolle KI in der Softwareentwicklung
- GenAl-Werkzeuge für die Kodierung: Copilot, Codeium und andere
- Die OWASP Top Ten aus der Sicht von Copilot
 - Die OWASP Top Ten 2021
 - A01 Defekte Zugangskontrolle
 - Grundlagen der Zugangskontrolle
 - Fallstudie Fehlerhaftes authn/authz

- in Apache OFBiz
- Verwirrter Abgeordneter
- Unsichere direkte Objektreferenz (IDOR)
- Pfadüberquerung
- Übung Unsichere direkte Objektreferenz
- Bewährte Verfahren zur Pfadüberquerung
- Übung Experimentieren mit der Pfadverfolgung in Copilot
- Berechtigungsumgehung durch benutzergesteuerte Schlüssel
- Fallbeispiel Fernübernahme von Nexx Garagentoren und Alarmanlagen
- Labor Horizontale Genehmigung (Erkundung mit Copilot)
- Hochladen von Dateien
 - Uneingeschränkter Datei-Upload
 - o Bewährte Praktiken
 - Übung Uneingeschränkter Datei-Upload (Erkundung mit Copilot)
 - Fallstudie Sicherheitslücke beim Hochladen von Dateien in Netflix Genie
- A02 Kryptographische Ausfälle
 - Kryptographie für Entwickler
 - Grundlagen der Kryptographie
 - Die kryptografische Java-Architektur (JCA) in Kürze
 - Elementare Algorithmen
 - Hashing
 - Grundlagen des Hashings
 - Hashing in Java
 - Übung Hashing in JCA (Erkundung mit Copilot)
 - Erzeugung von Zufallszahlen
 - Pseudo-Zufallszahlengeneratoren (PRNGs)
 - Kryptografisch sichere PRNGs
 - Schwache und starke PRNGs in Java

- Übung Verwendung von Zufallszahlen in Java (Erkundung mit Copilot)
- Fallstudie Equifax-Kontosperrung
- Schutz der Vertraulichkeit
 - Symmetrische Verschlüsselung
 - Blockchiffren
 - Betriebsarten
 - Betriebsarten und IV
 - bewährte Verfahren
 - Symmetrische Verschlüsselung in Java
 - Symmetrische Verschlüsselung in Java mit Streams
 - Übung -Symmetrische Verschlüsselung in JCA (Erkundung mit Copilot)
 - Asymmetrische Verschlüsselung
 - Kombination von symmetrischen und asymmetrischen Algorithmen
 - Schlüsselaustausch und Vereinbarung
 - Austausch von Schlüsseln
 - Diffie-Hellman-Schlüs selvereinbarungsalgo rithmus
 - Die wichtigsten Fallstricke beim Austausch und bewährte Verfahren

Tag 2

Die OWASP Top Ten aus der Sicht von Copilot

- A03 Injektion
 - Injektionsprinzipien
 - · Injektionsangriffe
 - SQL-Einschleusung
 - Grundlagen der SQL-Injektion
 - Übung SQL-Injektion
 - Angriffsmethoden
 - Inhaltsbasierte blinde SQL-Injektion
 - · Zeitbasierte blinde SQL-

Injektion

- Bewährte Praktiken zur SQL-Einschleusung
- Überprüfung der Eingaben
- Parametrisierte Abfragen
- Übung Verwendung vorbereiteter Erklärungen
- Übung Experimentieren mit SQL-Injection in Copilot
- · Datenbankverteidigung in der Tiefe
- Fallstudie SQL-Injektion in Fortra FileCatalyst
- Code-Einspritzung
 - OS-Befehlsinjektion
 - Bewährte Praktiken der OS-Befehlsinjektion
 - Verwendung von Runtime.exec()
 - Fallstudie Shellshock
 - · Labor Shellshock
 - Fallstudie Befehlsinjektion in VMware Aria
- HTML-Injektion Cross-Site-Scripting (XSS)
 - Grundlagen des Cross-Site-Scripting
 - Cross-Site-Scripting-Typen
 - Anhaltendes Cross-Site-Scripting
 - Reflektiertes Cross-Site-Scripting
 - Client-seitiges (DOMbasiertes) Cross-Site-Scripting
 - Übung Gespeicherte XSS
 - Labor Reflektiertes XSS
 - Bewährte Praktiken zum Schutz vor XSS
 - Schutzprinzipien Flucht
 - XSS-Schutz-APIs in Java
 - Lab XSS fix / gespeichert (Erkundung mit Copilot)
 - Labor XSS-Behebung / reflektiert (Erkundung mit Copilot)
 - Zusätzliche Schutzschichten -Verteidigung in der Tiefe
 - Fallstudie XSS-Schwachstellen in DrayTek Vigor-Routern
- · A04 Unsicheres Design
 - Das STRIDE-Modell der Bedrohungen
 - Sichere Gestaltungsprinzipien von Saltzer und Schroeder
 - Wirtschaftlichkeit des Mechanismus
 - Ausfallsichere Voreinstellungen
 - Vollständige Mediation
 - · Open design
 - Trennung der Privilegien

- Geringstes Privileg
- Am wenigsten verbreiteter Mechanismus
- Psychologische Akzeptanz
- Client-seitige Sicherheit
- Rahmen-Sandboxing
- Cross-Frame-Scripting-Angriffe (XFS)
- Labor Clickjacking
- Clickjacking geht über die Entführung eines Klicks hinaus
- Bewährte Praktiken zum Schutz vor Clickjacking
- Übung Verwendung von CSP zur Verhinderung von Clickjacking (Erkundung mit Copilot)
- A05 Fehlkonfiguration der Sicherheit
 - Grundsätze der Konfiguration
 - XML-Entitäten
 - DTD und die Entitäten
 - Erweiterung der Entität
 - Angriff auf externe Entitäten (XXE)
 - Einbeziehung von Dateien mit externen Stellen
 - Server-Side Request Forgery mit externen Entitäten
 - Labor Angriff einer externen Einheit
 - Verhinderung von XXE
 - Labor Verbot der DTD
 - Fallstudie XXE-Schwachstelle in Ivanti-Produkten
 - Labor Experimentieren mit XXE in Copilot

Tag 3

Die OWASP Top Ten aus der Sicht von Copilot

- A06 Anfällige und veraltete Komponenten
 - Verwendung anfälliger Komponenten
 - Import von nicht vertrauenswürdigen Funktionen
 - Fallstudie Der Angriff auf die Lieferkette von Polyfill.io
 - Management von Schwachstellen
 - Übung Auffinden von Schwachstellen in Komponenten von Drittanbietern
 - Sicherheit von KI-generiertem Code
 - Praktische Angriffe auf Tools zur Codegenerierung
 - Abhängigkeits-Halluzination durch generative KI
 - Fallstudie Eine Geschichte der Schwächen von GitHub Copilot (bis

Mitte 2024)

- A07 Fehler bei der Identifizierung und Authentifizierung
 - Authentifizierung
 - Grundlagen der Authentifizierung
 - Multi-Faktor-Authentifizierung (MFA)
 - Fallstudie Der InfinityGauntlet-Angriff
 - Passwortverwaltung
 - Verwaltung eingehender Passwörter
 - Speichern von Kontopasswörtern
 - Labor Reicht das Hashing von Passwörtern aus?
 - Wörterbuchangriffe und Brute-Forcing
 - Salzen
 - Adaptive Hash-Funktionen für die Passwortspeicherung
 - Übung Verwendung adaptiver Hash-Funktionen in JCA
 - Übung Verwendung adaptiver Hash-Funktionen in Copilot
 - Passwort-Politik
 - NIST-Authentifikator-Anforderungen für gespeicherte Geheimnisse
- A08 Fehler in der Software und Datenintegrität
 - Schutz der Integrität
 - Nachrichten-Authentifizierungs-Code (MAC)
 - MAC-Berechnung in Java
 - Übung MAC-Berechnung in JCA
 - Digitale Unterschrift
 - Elliptische Kurven Kryptographie
 - ECC-Grundlagen
 - · Digitale Unterschrift mit ECC
 - Digitale Unterschrift in Java
 - Übung Digitale Signatur mit ECDSA in JCA
 - Integrität der Subressource
 - JavaScript importieren
 - Übung JavaScript importieren (mit Copilot erkunden)

- Fallstudie Die Datenschutzverletzung bei British Airways
- · Unsichere Deserialisierung
 - Herausforderungen bei Serialisierung und Deserialisierung
 - Integrität Deserialisierung nicht vertrauenswürdiger Datenströme
 - Integrität bewährte Verfahren zur Deserialisierung
 - Vorausschauende Deserialisierung
 - Eigenschaftsorientiertes Programmieren (POP)
 - Erstellen einer POP-Nutzlast
 - Übung Erstellen einer POP-Nutzlast
 - Übung Verwendung der POP-Nutzlast
 - Fallstudie Deserialisierungs-RCEs in NextGen Mirth Connect
- A09 Fehler bei der Sicherheitsprotokollierung und
 - -überwachung
 - Grundsätze der Protokollierung und Überwachung
 - Rundholz fälschen
 - Protokollfälschung bewährte Verfahren
 - Fallstudie Log-Interpolation in log4j
 - Fallstudie Die Log4Shell-Schwachstelle (CVE-2021-44228)
 - Fallstudie Log4Shell-Folgemassnahmen (CVE-2021-45046, CVE-2021-45105)
 - Übung Log4Shell
- A10 Server-seitige Anforderungsfälschung (SSRF)
 - Server-seitige Anforderungsfälschung (SSRF)
 - Fallbeispiel SSRF in Ivanti Connect Secure
- Einpacken
 - Grundsätze der sicheren Kodierung
 - Grundsätze der robusten Programmierung von Matt Bishop
 - Und was nun?
 - Quellen zur Softwaresicherheit und weiterführende Literatur

- Java-Ressourcen
- Verantwortungsvolle KI-Prinzipien in der Softwareentwicklung
- Generative AI Ressourcen und zusätzliche Anleitungen

Weltweite Trainingscenter

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3 CH-8304 Wallisellen Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch