

ID CRWGAIC Preis auf Anfrage Dauer 3 Tage

Zielgruppe

C#-Entwickler, die Copilot oder andere GenAl-Tools verwenden

Voraussetzungen

Allgemeine C#-Entwicklung

Kursziele

- Das Wesentliche der verantwortungsvollen KI verstehen
- Vertrautmachen mit grundlegenden Konzepten der Cybersicherheit
- Ansätze und Grundsätze der Eingabevalidierung
- Ermittlung von Schwachstellen und deren Folgen
- Lernen Sie die besten Sicherheitspraktiken in C#
- Korrekte Implementierung verschiedener Sicherheitsmerkmale
- Verwaltung von Schwachstellen in Komponenten von Drittanbietern
- · Verstehen, wie Kryptographie die Sicherheit unterstützt
- Lernen, wie man kryptografische APIs in C# richtig verwendet
- All dies im Kontext von GitHub Copilot

Kursinhalt

Tag 1

Verantwortungsbewusst kodieren mit GenAl

- Was ist verantwortungsvolle KI?
- · Was ist Sicherheit?
- · Bedrohung und Risiko
- Arten von Cybersicherheitsbedrohungen die CIA-Triade
- · Folgen von unsicherer Software
- Sicherheit und verantwortungsvolle KI in der Softwareentwicklung
- GenAl-Werkzeuge f
 ür die Kodierung: Copilot, Codeium und andere

- Überprüfung der Eingaben
 - · Input-Validierungsprinzipien
 - o Denylisten und Zulassungslisten
 - o Was zu validieren ist die Angriffsfläche
 - · Wo soll validiert werden Verteidigung in der Tiefe
 - Wann validieren Validierung vs. Umwandlung
- Einspritzung
 - · Code-Einspritzung
 - · OS-Befehlsinjektion
 - Übung Befehlsinjektion
 - Bewährte Praktiken zur Injektion von OS-Befehlen
 - Vermeidung von Befehlseingaben mit den richtigen
 - Übung Bewährte Praktiken der Befehlsinjektion
 - Übung Experimentieren mit der Befehlsinjektion in Copilot
 - Fallstudie Befehlsinjektion in Ruckus
- Probleme im Umgang mit Ganzzahlen
 - o Darstellung von Zahlen mit Vorzeichen
 - Integer-Visualisierung
 - Integer-Überlauf
 - Labor Integer-Überlauf
 - Verwirrung mit Vorzeichen / ohne Vorzeichen
 - Fallstudie Die Stockholmer Börse
 - Labor Verwechslung mit Vorzeichen / ohne Vorzeichen
 - Labor Experimentieren mit vorzeichenlosen/vorzeichenbehafteten Verwechslungen in Copilot
 - · Ganzzahlige Trunkierung
 - Bewährte Praktiken
 - Upcasting
 - Prüfung der Vorbedingungen
 - Prüfung nach der Bedingung
 - Integer-Verarbeitung in C#
 - · Labor Kontrollierte Arithmetik
 - Übung Experimentieren mit Integer-Überlauf in Copilot
- Dateien und Datenströme
 - Pfadüberquerung
 - Übung Pfadüberquerung
 - o Zusätzliche Herausforderungen in Windows
 - Fallstudie Dateispoofing in WinRAR
 - o Bewährte Verfahren zur Pfadüberquerung
 - Labor Kanonisierung von Pfaden

 Übung - Experimentieren mit der Pfadverfolgung in Copilot

Tag 2

Überprüfung der Eingaben

- Unsichere Reflexion
 - · Reflexion ohne Validierung
 - Labor Unsichere Reflexion
 - Übung Experimentieren mit unsicherer Reflexion in Copilot
- · Unsicherer nativer Code
 - Abhängigkeit von nativem Code
 - Übung Unsicherer nativer Code
 - Bewährte Praktiken für den Umgang mit nativem Code
- Sicherheitsmerkmale
 - · Authentifizierung
 - Grundlagen der Authentifizierung
 - Multi-Faktor-Authentifizierung (MFA)
 - Fallstudie Der InfinityGauntlet-Angriff
 - Zeitbasierte Einmal-Passwörter (TOTP)
 - · Passwortverwaltung
 - Verwaltung eingehender Passwörter
 - Speichern von Kontopasswörtern
 - Passwort im Transit
 - Labor Reicht das Hashing von Passwörtern aus?
 - Wörterbuchangriffe und Brute-Forcing
 - Salzen
 - Adaptive Hash-Funktionen für die Passwortspeicherung
 - Übung Verwendung adaptiver Hash-Funktionen in C#
 - Übung Verwendung adaptiver Hash-Funktionen in Copilot
 - Fallstudie Fehlende Authentifizierung und Klartext-Passwortspeicherung bei Veeam
 - Passwort-Politik
 - NIST-Authentifikator-Anforderungen für gespeicherte Geheimnisse
 - Migration der Passwort-Datenbank
 - Fest kodierte Passwörter
 - Bewährte Praktiken
 - Labor Hartkodiertes Passwort
 - Schutz sensibler Informationen im Speicher
 - Herausforderungen beim Schutz der Erinnerung
 - Fallstudie Diebstahl geheimer Microsoft-Schlüssel über Dump-Dateien
 - Speicherung sensibler Daten im Speicher
 - Fallstudie KeePass-Passwortleck über Zeichenketten

- Informationsexposition
 - Offenlegung durch extrahierte Daten und Aggregation
 - Fallstudie Strava-Datenexposition
- Sicherheit der Plattform
 - Sicherheit der .NET-Plattform
 - Schutz von .NET-Code und -Anwendungen
 - Unterzeichnung des Codes
- · Denial of Service
 - Überschwemmungen
 - Erschöpfung der Ressourcen
 - Fragen der algorithmischen Komplexität
 - Denial of Service mit regulären Ausdrücken (ReDoS)
 - Labor ReDoS
 - Labor Experimentieren mit ReDoS in Copilot
 - Der Umgang mit ReDoS
- Verwendung anfälliger Komponenten
 - Fallstudie Der Angriff auf die Lieferkette von Polyfill.io
 - Management von Schwachstellen
 - Übung Auffinden von Schwachstellen in Komponenten von Drittanbietern
- · Sicherheit von KI-generiertem Code
 - Praktische Angriffe auf Tools zur Codegenerierung
 - Abhängigkeits-Halluzination durch generative KI
 - Fallstudie Eine Geschichte der Schwächen von GitHub Copilot (bis Mitte 2024)

Tag 3

Kryptographie für Entwickler

- Grundlagen der Kryptographie
- Krypto-APIs in C#
- · Elementare Algorithmen
- Hashing
 - Grundlagen des Hashings
 - Hashing in C#
 - Übung Hashing in C# (Erkundung mit Copilot)
- Erzeugung von Zufallszahlen
 - Pseudo-Zufallszahlengeneratoren (PRNGs)
 - Kryptografisch sichere PRNGs
 - Schwache und starke PRNGs
 - Verwendung von Zufallszahlen in C#
 - Übung Verwendung von Zufallszahlen in C# (Erkundung mit Copilot)
 - Fallstudie Equifax-Kontosperrung
- Schutz der Vertraulichkeit
 - Symmetrische Verschlüsselung
 - Blockchiffren

- Betriebsarten
- Betriebsarten und IV bewährte Verfahren
- Symmetrische Verschlüsselung in C#
- Symmetrische Verschlüsselung in C# mit Streams
- Übung Symmetrische Verschlüsselung in C# (Erkundung mit Copilot)
- Fallstudie Padding-Orakel in RCE gegen Citrix ShareFile verwendet
- Asymmetrische Verschlüsselung
 - Der RSA-Algorithmus
 - RSA in C#
 - Kombination von symmetrischen und asymmetrischen Algorithmen
- Schlüsselaustausch und Vereinbarung
 - · Austausch von Schlüsseln
 - Diffie-Hellman-Schlüsselvereinbarungsalgorithmus
 - Die wichtigsten Fallstricke beim Austausch und bewährte Verfahren
- · Schutz der Integrität
 - Nachrichten-Authentifizierungs-Code (MAC)
 - HMAC-Berechnung in C#
 - Übung MAC-Berechnung in C#
 - Digitale Unterschrift
 - Digitale Unterschrift mit RSA
 - Elliptische Kurven Kryptographie
 - ECC-Grundlagen
 - Digitale Unterschrift mit ECC
 - Digitale Unterschrift in C#
 - Übung Digitale Signatur mit ECDSA in C#
- · Häufige Sicherheitslücken in Software
 - Code quality
 - Codequalität und Sicherheit
 - Umgang mit Daten
 - Initialisierung und Bereinigung
 - Initialisierungszyklen der Klasse
 - Übung Initialisierungszyklen (Erkundung mit Copilot)
 - Fallstricke der objektorientierten
 - Programmierung
 - Vererbung und Overriding
 - Veränderlichkeit
 - Lab Veränderbares Objekt (Erkundung mit Copilot)
 - Serialisierung
 - Herausforderungen bei Serialisierung und Deserialisierung
 - Integrität Deserialisierung nicht vertrauenswürdiger Datenströme

- Integrität bewährte Verfahren zur Deserialisierung
- Vorausschauende Deserialisierung
- Eigenschaftsorientiertes Programmieren (POP)
- Erstellen einer POP-Nutzlast
- Übung Erstellen einer POP-Nutzlast
- Übung Verwendung der POP-Nutzlast
- Fallstudie Deserialisierung RCE in Veeam
- Einpacken
 - Grundsätze der sicheren Kodierung
 - Grundsätze der robusten Programmierung von Matt Bishop
 - Sichere Gestaltungsprinzipien von Saltzer und Schroeder
 - Und was nun?
 - Quellen zur Softwaresicherheit und weiterführende Literatur
 - .NET- und C#-Ressourcen
 - Verantwortungsvolle KI-Prinzipien in der Softwareentwicklung
 - Generative AI Ressourcen und zusätzliche Anleitungen

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3 CH-8304 Wallisellen Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch