
Code responsibly with generative AI in C++ (CRWGAIC++)

ID CRWGAIC++ Preis CHF 2'250.– (exkl. MwSt.) Dauer 3 Tage

Zielgruppe

C/C++-Entwickler, die Copilot oder andere GenAI-Tools
verwenden

Voraussetzungen

Allgemeine C++- und C-Entwicklung

Kursziele

Das Wesentliche der verantwortungsvollen KI verstehen
Vertrautmachen mit grundlegenden Konzepten der
Cybersicherheit
Korrekte Implementierung verschiedener
Sicherheitsmerkmale
Ermittlung von Schwachstellen und deren Folgen
Lernen Sie die besten Sicherheitspraktiken in C++
Verwaltung von Schwachstellen in Komponenten von
Drittanbietern
Ansätze und Grundsätze der Eingabevalidierung
All dies im Kontext von GitHub Copilot

Einpacken

Grundsätze der sicheren Kodierung
Grundsätze der robusten Programmierung von Matt
Bishop
Sichere Gestaltungsprinzipien von Saltzer und
Schroeder

Und was nun?
Quellen zur Softwaresicherheit und weiterführende Literatur

C- und C++-Ressourcen
Verantwortungsvolle KI-Prinzipien in der
Softwareentwicklung
Generative AI - Ressourcen und zusätzliche
Anleitungen

Kursinhalt

Tag 1

Verantwortungsbewusst kodieren mit GenAI

Was ist verantwortungsvolle KI?
Was ist Sicherheit?
Bedrohung und Risiko
Arten von Cybersicherheitsbedrohungen - die CIA-Triade
Arten von Cybersicherheitsbedrohungen - das STRIDE-
Modell
Folgen von unsicherer Software
Sicherheit und verantwortungsvolle KI in der
Softwareentwicklung
GenAI-Werkzeuge für die Kodierung: Copilot, Codeium und
andere

Schwachstellen in der Speicherverwaltung

Montagegrundlagen und Aufrufkonventionen
x64 assembly essentials
Register und Adressierung
Häufigste Anweisungen
Aufruf von Konventionen auf x64
Einberufung von Kongressen - was es damit auf
sich hat
Aufrufkonvention auf x64

Der Stapelrahmen
Gestapelte Funktionsaufrufe
Pufferüberlauf

Speicherverwaltung und Sicherheit
Puffersicherheitsprobleme
Pufferüberlauf auf dem Stack
Pufferüberlauf auf dem Stack - Stack Smashing
Ausbeutung - Entführung des Kontrollflusses
Übung - Pufferüberlauf 101, Wiederverwendung
von Code
Ausnutzung - Willkürliche Codeausführung
Einschleusen von Shellcode
Übung - Code-Injektion, Ausbeutung mit Shellcode
Fallstudie - Stack BOF in FriendlyName
Handhabung des Wemo Smart Plug

Zeiger-Manipulation
Modifikation von Sprungtabellen
Überschreiben von Funktionszeigern
Bewährte Verfahren und einige typische Fehler

Unsichere Funktionen
Umgang mit unsicheren Funktionen
Übung - Behebung eines Pufferüberlaufs
(Erkundung mit Copilot)

Verwendung von std::string in C++
Manipulation von C-ähnlichen Zeichenketten in C++

Seite 1/3

Code responsibly with generative AI in C++ (CRWGAIC++)

Bösartige Beendigung von Zeichenketten
Labor - Verwirrung bei der Terminierung von
Zeichenketten (Erkundung mit Copilot)
Fehler bei der Berechnung der Stringlänge

Tag 2

Härtung der Speicherverwaltung

Absicherung der Toolchain
Absicherung der Toolchain in C++
Verwendung von FORTIFY_SOURCE
Labor - Auswirkungen von FORTIFY

Adress-Sanitizer (ASan)
AddressSanitizer (ASan) verwenden
Übung - AddressSanitizer verwenden

Schutz vor Stapelzerschlagung
Erkennung von BoF mit einem Stack Canary
Klonen von Argumenten
Schutz vor Stapelzerstörung auf verschiedenen
Plattformen
SSP-Änderungen des Prologs und Epilogs
Labor - Auswirkungen des
Stapelzerstörungsschutzes

Laufzeit-Schutzmassnahmen
Laufzeit-Instrumentierung
Adressraum-Layout-Randomisierung (ASLR)

ASLR auf verschiedenen Plattformen
Labor - Auswirkungen von ASLR
Umgehung von ASLR - NOP-Schlitten
Umgehung von ASLR - Speicherlecks

Nicht ausführbare Speicherbereiche
Das NX-Bit
Schreiben XOR Ausführen (W^X)
NX auf verschiedenen Plattformen
Labor - Auswirkungen von NX
NX-Umgehung - Angriffe durch Wiederverwendung
von Code
Return-to-libc / Bogeninjektion
Rückgabeorientierte Programmierung (ROP)
Schutz vor ROP

Fallstudie - Systematische Ausnutzung eines MediaTek-
Pufferüberlaufs

Tag 3

Häufige Sicherheitslücken in Software

Sicherheitsmerkmale
Authentifizierung
Passwortverwaltung

Verwaltung eingehender Passwörter
Speichern von Kontopasswörtern
Passwort im Transit
Labor - Reicht das Hashing von

Passwörtern aus?
Wörterbuchangriffe und Brute-Forcing
Salzen
Adaptive Hash-Funktionen für die
Passwortspeicherung
Passwort-Politik
NIST-Authentifikator-Anforderungen für
gespeicherte Geheimnisse
Migration der Passwort-Datenbank

Code quality
Codequalität und Sicherheit

Umgang mit Daten
Typ-Fehlanpassung
Labor - Typeninkongruenz (Erkundung mit Copilot)
Initialisierung und Bereinigung

Konstrukteure und Destrukteure
Initialisierung von statischen Objekten
Übung - Initialisierungszyklen (Erkundung
mit Copilot)

Unveröffentlichte Ressource
Array-Verfügung in C++
Übung - Mischen von delete und delete[]
(Erkundung mit Copilot)

Fallstricke der objektorientierten Programmierung
Zugänglichkeitsmodifikatoren
Sind Zugänglichkeitsmodifikatoren ein
Sicherheitsmerkmal?
Vererbung und Objektaufteilung
Implementierung des Kopieroperators
Der Kopieroperator und die Veränderbarkeit
Veränderlichkeit
Objekte mit veränderlicher Prädikatsfunktion
Lab - Objekt mit veränderlicher Prädikatsfunktion

Verwendung anfälliger Komponenten

Sicherheit von KI-generiertem Code
Praktische Angriffe auf Tools zur Codegenerierung
Abhängigkeits-Halluzination durch generative KI
Fallstudie - Eine Geschichte der Schwächen von GitHub
Copilot (bis Mitte 2024)

[/list]

Seite 2/3

Code responsibly with generative AI in C++ (CRWGAIC++)

Weltweite Trainingscenter

Fast Lane Institute for Knowledge Transfer (Switzerland) AG

Husacherstrasse 3
CH-8304 Wallisellen
Tel. +41 44 832 50 80

info@flane.ch, https://www.flane.ch

Powered by TCPDF (www.tcpdf.org)

Seite 3/3

http://www.tcpdf.org

